REVISTA COLOMBIANA DE COMPUTACION
Volumen 9, nimero 1
Pags. 33 - 57

Semantic caching in large scale
querying systems

Laurent d'Orazio” Claudia Roncancio Cyril Labbé’
Fabrice Jouanot’
Fecha de Recibido: 08/01/2008; Fecha de Aprobacion: 15/03/2008

Abstract

Caching is crucial to improve performances in many computing
systems. This work proposes a caching approach for improving
query evaluation. The proposed solution follows a semantic
oriented approach and combines query and object caching.
Separating query and objects provides high flexibility, by making
possible to use several cooperations between caches and by
supplying different query management tools. Our proposition has
been experimented in a grid data management middleware and
seems promising as showed by the results obtained with a
bioinformatics data bank.

Keywords: semantic, cooperation, grid, data querying.

1 Introduction

Important work has been done in several areas to provide effective
solutions for data sharing in large distributed systems. Nevertheless
querying a data grid remains a challenging task. Neither brand new
cluster technology, nor network bandwidth increase can ensure a good
query execution time in many scientific domains where many clients
search for large amount of data distributed on many cluster nodes, and
moreover, on distant grid clusters. These data are generally used in
heavy processing tasks and therefore accessing data should not be time
consuming. It is important to let grid users (scientists or not) focusing
on their job tasks by providing short time for data access. It means grid
middleware has to optimize the use of the grid by distributing the load to
the different available and relevant resources. This paper describes a
contribution to improve data transfer and processing in query
evaluation on data grid using an advanced caching approach. The
Gedeon middleware is used to experiment our caching solution. It
offers a flexible architecture which is easily deployed with DB query

" Laboratoire d'Informatique de Grenoble 681 rue de la Passerelle BP. 72 38402 Saint
Martin d'Heres Cedex, France, firstname.lastname@imag.fr. L1G is a join laboratory to
INP Grenoble, CNRS, UJF, INRIA and UPMF

34

Laurent d'Orazio, Claudia Roncancio, Cyril Labbé, Fabrice Jouanot

features. The main ideas of the caching proposition relies 1) on the use
of partially pre-calculated queries handled by cache services and 2) on
the definition of a logical network of cache services which can
cooperate together to enhance data access into the grid. These semantic
caches may be deployed according to the grid infrastructure and user
requirements. Queries naturally concern one or several sources
distributed across the grid.

The semantic cache we propose is composed of a cache service, named
dual cache, and a query manager. A dual cache is defined as a
cooperation between a query cache and an object cache. The query
cache keeps the calculated queries together with the identifiers of
objects answering such queries. The object cache keeps accessed
objects. Such a solution optimizes storage resource management,
avoiding replication when objects are shared by several cached queries.
In addition it saves computation, by making possible to cache a large
number of query evaluations, even if corresponding objects do not all fit
in the object cache. As a consequence, dual cache is particularly
promising in a grid context, where resources (data sources and
bandwidth) are shared among a large number of clients. The query
manager provides two main services: (1) query capabilities to allow
local evaluation of queries on the object cache and (2) query matching to
compare received queries with pre-calculated ones in the query cache.
These functions reduce server load and enhance local query evaluation.
This proposal is particularly interesting in contexts where related
queries are submitted in succession and their results overlap.

If a query cannot be evaluated by using the local cache service then
several query evaluation strategies are possible. Among them, this
paper proposes strategies using cache cooperation over the grid.
Strategies rely on logical networks of cache services. A cache service
may cooperate with several other caches. Cooperation may evolve and
be adapted to improve query evaluation according to the current state of
the grid and users affinity. Users working on a same cluster are
"physically close" whereas users working on a same subject are
"semantically close". Mapping this to cache services, this paper
considers two main approaches to cooperation: query caches may
cooperate according to a semantic logical network whereas object
caches cooperation will be dominated by the characteristics of the
underlying infrastructure. Experiments show the benefits of this
approach in querying large scale distributed data.

This paper is organized as follows. Section 2 presents our proposition
and its experimental application domains whereas section 3 presents a
performance analysis in a middleware for data management on grids.

Semantic caching in large scale querying systems

Related work is described in section 4. Section concludes this paper and
gives research perspectives.

2 Dual cache and query management

Site 2 Site 3

O e T e fe]
= mee | [——

P

o on

Cuery svaluation middleware

F
%/ Semarntic dual cache

[] Data source

Figure 1. Evaluation on grids

We propose a semantic cache [12, 19] solution integrating light weight
query management capabilities and cooperative facilities. The figure 1
presents a simple example of the grid infrastructure we consider.
Different sites are grouped in a cluster and different clusters are
distributed in different places. A site is composed of clients, a query
manager and eventually a data source. The query manager is part of the
grid middleware and is in charge of query management, i.e. query
decomposition and results building. A query manager is viewed as a
flexible service built from different components. The cache service is
one of these components and works together with the query manager.
When site 1 receivesaclientrequest Q, its query manager searches for
results in the local cache. If part of the answer is not present in the cache,
a cache miss occurs, generating sub queries to be posed to relevant other
sites. Query decomposition is more accurate and figure 2 gives a better
description of the cooperation between dual cache and query manager.
The different cases of cache miss and resolution strategies will be studied
in the next section. This proposal attempts to maximize advantages of
semantic caching which are the reduction of both data transfers and
query computation. It clearly distinguishes these two goals by managing
a couple composed of a query cache and an object cache. Such a solution
provides high flexibility to establish intra and inter site cooperation
among the semantic caches deployed across the grid.

We illustrate our proposal with bioinformatics data management issues
in grid. In this field, many software applications (BLAST and PattInProt
for examples) need access to large and distributed data bank for
processing protein sequences. This matches with semantic cache

36

Laurent d'Orazio, Claudia Roncancio, Cyril Labbé, Fabrice Jouanot

proposal which is particularly interesting in contexts where series of
related queries will be issued in succession, with the results being at
least partially overlapping. We focus on Swiss-Prot [3] a biological
bank of protein sequences. This bank contains protein descriptions
which consist in protein sequences, playing the role of objects, and
related meta-data. Scientists search for relevant sequences to work with
using meta-data to query the bank. Considering data volume, there are
much more meta-data information than protein objects, therefore this is
acomplex and interesting use of semantic cache.

In the following, section 2.1 presents dual cache, section 2.2 introduces
query management aspects and section 2.3 discusses cooperation
potentiality.

2.1 Dual cache .

-
{Object}

Dual cache

Query cache Object cache
year=2006 {P16711, 043495} P15711 | rec-P16711
year=2010 {r oo Q43485 | rec-Q434895
species=virus [P15711, P13813} P18646 | rec-P1Bo4a
authcr=Blanchet {P13813 P19084} QUXHPO | rec-QEXHPO
Cuery H {Object} {Identifier} H {Object}

=i SRS -

Figure 2. Semantic dual cache

A dual cache is composed by a query cache and an object cache as
illustrated in figure 2. Dual caches are intended to be deployed on user
or proxy [20] sites. They will rely on the resources of these machines to
improve query evaluation. The query cache manages query results. It is
inspired of the concept of views in DBMS. It is used to store (pre-
calculated) queries. The identifier of an entry of the query cache Q
corresponds to a query (year=2006, year=2010,
species=virus and author=Blanchet in the figure 2),
whereas its value is the set of identifiers of the relevant objects
objIdList (for example {P15711, 043495}). Like in view
caching [26], objects are not stored in the query cache.

Example 1 Figure 2 illustrates the content of the query cache for the
considered application. In such a context, identifiers are strings. The

first entry corresponds to the evaluation of a query enabling to select

objects which the year attribute value is 200 6. For this evaluation,
objects identified by P15711 and Q434 95 are the only answers.

Semantic caching in large scale querying systems 37

Example 2 With the same content, it can be noted that the answer of
the query year=2010 enabling to select entries created or modified
in 2010 is empty. In other words, no object answers such a criteria.

Dual cache aims to be used in largely distributed systems, where
accessing data on sources is expensive. This is the opposite of a classical
view caching approach, whereas objects are directly accessed via data
sources. Such a solution, usually proposed in centralized systems,
involves quite low access costs (in comparison to evaluation costs).
Therefore, in a dual cache, cache accesses are based on an object cache.
The identifier of an entry of an object cache, 1dObj (P15711,043495,
P18646 and Q9XHPO in the figure 2) corresponds to the identifier of a
given object, whereas the value obj (rec-P15711, rec-Q43495,
rec-P18646 and rec-Q9xXHPO in the figure 2) is the object itself. It
has to be noted that none synchronization is required between content of
object and query cache: this depends of application needs and
infrastructure specificities. As a consequence, pre-calculated queries or
views may be full (every corresponding objects are stored in the cache)
or partially (some objects are absent from the cache) materialized.

ID 104K_THEPA STANDARD; PRT; 924 AA.
AC PI5711;

DT 01-APR-1990 (Rel. 14, Created)

DT 01-APR-1990 (Rel. 14, Last sequence update)

DT 10-MAY-2005 (Rel. 47, Last annotation update)

DE 104 kDa microneme-rhoptry antigen.

oS Theileria parva.

oC Eukaryota; Alveolata; Apicomplexa; Piroplasmida; Theileriidae;

ocC Theileria.
OX NCBI_TaxID=5875;
RN 1]

RP NUCLEOTIDE SEQUENCE.

RC STRAIN=Muguga;

RX MEDLINE=90158697; PubMed=1689460; DOI=10.1016/0166-6851(90)90007-9;
RA Tams K.P., Young J.R., Nene V., Desai J., Webster P., Ole-Moiyoi O.K.,
RA Musoke A.J.;

RT "Characterisation of the gene encoding a 104-kilodalton microneme-
RT rhoptry protein of Theileria parva.";

RL Mol. Biochem. Parasitol. 39:47-60(1990).

cC -1- SUBCELLULAR LOCATION: In microneme/rhoptry complexes.
CcC -I- DEVELOPMENTAL STAGE: Sporozoite antigen.

DR EMBL; M29954; AAA18217.1; -; Unassigned_DNA.

DR PIR; A44945; A44945.

DR InterPro; IPR0O07480; DUF529.

DR Pfam; PF04385; FAINT; 4.

KW Antigen; Repeat; Sporozoite.

FT REGION 1 19 Hydrophobic.

FT REGION 905 924 Hydrophobic.

SH SEQUENCE 924 AA; 103626 MW; 289B4B554A61870E CRC64;
SQ

MKFLILLFNILCLFPVLAADNHGVGPQGASGVDPITFDINSNQTGPAFLTAVEMAGVKYLQVQHGSNVNIH
RLVEGNVVIWENASTPLYTGA
IVINNDGPYMAYVEVLGDPNLQFFIKSGDAWVTLSEHEYLAKLQEIRQAVHIESVFSLNMAFQLENNKYE
VETHAKNGANMVTFIPRNGHICKMVYHKNV

Figure 3. Example of a Swiss-Prot record

Example 3 Figure 2 gives an example of content of the object cache.
Forthis application context, the entry's identifier is a string and its value
is a string formed as a set of (attribute, value) pairs, corresponding to

38

Laurent d'Orazio, Claudia Roncancio, Cyril Labbé, Fabrice Jouanot

data and meta-data associated to proteins' sequences. Figure 3 shows
an example of record for the Swiss-Prot data bank. A Swiss-Prot bank is
a simple flat file composed of records. Each record represents a protein
sequence with its related meta-data. Each line of record is a meta-data
which is introduced by a meta-data category (two characters) followed
by meta-data values. The first line of a record is always ID, a key meta-
data to identify the record (or the sequence) and the last line SQ is the
sequence itself. Meta-data format are from semi-structured to
unstructured one. This snapshot shows clearly that meta-data
information is much more large than the sequence object. In order to
simplify the representation, records stored in the object cache will not be
detailed, but simply represented by a string rec-1d.

When a query is submitted to dual cache, it is first forwarded to the
query cache. It may result in a hit or a miss. There is a query hit if entries
of the query cache can be used to answer the query. In that case, an
identifiers list 1dObjList is retrieved. If this list is not empty, it is
used to load the list of the corresponding objects objList via the
object cache.

Example 4 The content of the query cache illustrated by figure 2 and
the query year=2006 produces the success list {P15711,
043495} which is submitted to the object cache to retrieve the
corresponding elements.

If a cache miss occurs, the resolution process is initiated. Classical
resolution consists in sending the query to the appropriate data sources.
Another way to resolve a cache miss, is to contact other caches, using
cooperative policies (see section 2.3).

Example 5 With the content of the query cache illustrated by figure 2
and the query year=2004 submitted, there is a miss and the query
year=2004is forwarded to data sources.

Dual cache can be accurately configured. In fact, the query cache and the
object cache can use their own strategies. In particular, the replacement
or admission strategies of each cache can be independent. As a
consequence, consistency between the query cache and the object cache
may be strong or weak, according to the chosen cooperation strategy. It
has to be noted that weak consistency may imply miss resolution for the
object cache and the query cache. As a consequence servers or data
sources must provide access via queries or identifiers lists.

The dual cache approach ensures some advantages in large distributed
systems sharing large amounts of data. First, as cached objects may be

Semantic caching in large scale querying systems

shared by several cached queries, memory use is optimal. In fact, an
object is present at most one time in the object cache, even if it is
referenced by several entries in the query cache. The independent
management of query and object caches saves in many cases
computation time and servers loads. In particular, if data sources
provide relevant indexation mechanisms, retrieving objects via their
identifiers is more efficient than evaluating the corresponding query. As
a consequence, load on data sources can be greatly decreased. Finally
the communication between query cache and object cache and the
configuration of each of them are very flexible: (1) the retained size of
each cache will determine whether data caching or computational
caching is emphasized; (2) the synchronization between both query and
object caches depends of the level of coherence between pre-calculated
queries and objects required by the context (application, user,
infrastructure); (3) the replacement strategy may be different for each
cache. A fine setup of the whole intrinsic parameters of a dual cache is a
challenging task for defining the best cache configuration in a specific
context.

2.2 Light weight query manager

The query manager of the semantic cache isolates two distinct, but
cooperative components to offer query capabilities and query
matching. By query matching, we consider the semantic process of
comparing a submitted query with the query cache content to deduce
semantic overlap or semantic mismatch. By query capabilities we mean
operators to locally evaluate queries on objects in the cache.

Query matching process analyzes queries to identify what cache entries
are involved in answering a query g. When it is submitted, four types of
hit may arise.

« Exact hit: q is already pre-calculated in the cache. This is the
best situation where the query was already submitted. In this
case, the query cache contacts the object cache to retrieve
associated objects. The object cache initiates cache miss
resolution if necessary. The complete answer is returned
through the query cache.

Example 6 With the content of the query cache illustrated by figure 2
and the query year=2006 submitted, there is an exact hit using the
entry which identifieris year=2006.

« Extended hit: g can be obtained from the content of the query
cache. Two situations may arise. In the first case, the identifier

39

40

Laurent d'Orazio, Claudia Roncancio, Cyril Labbé, Fabrice Jouanot

ofanentry el of the query cache is equivalent to g. In that case
all objects referenced by el answer g. In the second case, an
identifier of an entry e 2 of the query cache subsumes g. Thus,
the result of g can be obtained from the answer to e2. However
some kind of filtering process is required, for example a
selection or a projection. It can be achieved locally by the
query manager.

Example 7 With the content of the query cache illustrated by figure 2
and the query year>2005 A year<2007 submitted, there is an
extended hit using the entry which identifier is year=2006. In that
case, no filtering process is necessary.

Example 8 With the content of the query cache illustrated by figure 2
and the query year=2006 A species=bacteria submitted,
there is an extended hit using the entry which identifier is year=2006.
In that case, the answer may be calculated evaluating the query
submitted on the objects which identifiers are P15711 and 0434 95.

« Partial hit: Two cases arise whether (1) an entry's identifier e
subsumes g or (2) goverlaps e and g ¢ e. The answerof gisa
part of the global answer of e. In this situation q is split in a
probe query, which is the part known by the query cache and a
remainder query corresponding to the missing part [12].
Objects in the answer to the probe query are retrieved as in the
case of an exact hit. Remainder queries or miss resolution
events can be solved by data servers or cooperative sites.

Example 9 With the content of the query cache illustrated by figure 2
and the query year>2005 submitted, there is a partial hit using the
entry which identifier is year=2006. In that case, the answer includes
the objects which identifiers are P15711 and 0434 95. However, some
objects may be absent (objects created or modified since 2005) and has
to be retrieved from the server thanks to the remainder query
year>2005 A = (year=2006).

Example 10 Suppose a query submitted year=2006 A author=
Blanchet and a query cache containing a single entry which identifier
is year=2006 A species=virus and which valueis {P15711,
043495}. In that case, one part of the answer is obtained via an evalua-
tion on objects which identifiers are P15711 and 0434 95 whereas the
other part is retrieved submitting the remainder query year=2006 A
author=Blanchet A = (species=virus) todatasources.

Semantic caching in large scale querying systems

« There is a query miss if {\tt q}is totally disconnected from all
entries of the query cache.

As query matching can be a very complex process. It is crucial to be
able to judge when it is more effective to analyze query matching rather
than consider a query as a miss. The complexity of this process is
strongly related to querying capabilities of the query manager.

Querying capabilities are defined by operators (selections, projections,
ordering, grouping, etc.) that can be evaluated by the dual cache on
objects present in the object cache. As a matter of fact, when relevant
object identifiers of a submitted query g are present in pre-calculated
query the dual cache uses its own query capabilities to process results.
As it can be assumed that the cache will work with a small amount of
data compared to the data managed by the server, it could be argued that
the maximum of operator should be present in the cache. But, this
would be interesting only if query capabilities are handled efficiently.
Two questions appear: (1) what are reliable situations for enabling
these query capabilities? (2) what are the relevant places for operators
between cache side and server side? As an example, if it is known that a
special sorting algorithm fits better to an identified access pattern than
the general one used by a server, then a sorting operator could be added
to the cache query capabilities. Moreover, reducing the number of
operators in the cache is also fruitful for the process of query matching.

Features built in a query manager provide high flexibility for
deploying a cache architecture, enabling and configuring this
component is the results of a trade off which is context dependent. It is
important to take into account the complexity of typical query,
resources allocated to the semantic cache, server and network loads. It
is also important to know the main purpose of the cache. If its final goal
is to save servers resources then an enhanced query manager is
required. All this knowledge has to be taken into account to choose the
appropriate level of functionality for the query manager. The
instantiation of a query manager may rely on works in the style of [31].
Our semantic cache approach provides a flexible architecture and
modular components to enhance data access in various middleware.
We are currently working to provide guide-line for well-configured
semantic cache and to apply this one in autonomous caches.

2.3 Cache cooperation

Dual cache allows better results in some grid contexts when
cooperation capability is enable. This section gives an overview of

41

42

Laurent d'Orazio, Claudia Roncancio, Cyril Labbé, Fabrice Jouanot

cache cooperation strategies and their management by a dual cache
architecture. An enhanced description can be found in [13].

A resolution protocol [9] defines the process to retrieve data when a
cache miss occurs. Choosing the right protocol is crucial in large
distributed context. For example, to avoid data sources to become a
bottleneck, one may prefer to search for data in other available and
efficient resources. An usual strategy consists in deploying caches in the
grid and defining cache cooperation at local level to enhance the global
grid management.

When the number of caches raises up, it is obvious that cooperations
between caches will be useful for miss resolution. Such cooperations
may aim to reduce query evaluations or data transfers. If these aspects
are sometimes antagonist for a classic cache, dual cache is a perfect
support to mix up different configurations.

We introduce the notion of proximity to drive cooperation strategies.
Proximity is a very generic concept based on distance functions to
evaluate the reliability of a cooperation, therefore we focus only on two
main characteristics for grid caching: physic and semantic proximity.
Physic proximity, like the concepts proposed by of Rabinovich et al. [25]
and Gadde et al. [18], prefers the cooperation between closed caches,
i.e. based on a distance function which estimates physical parameters
linking different caches as network type, network quality, cluster
membership, etc. As a consequence, data transfers will be given in
priority to caches in the same area, avoiding congestion in the global
network. Semantic proximity, similarly to group of interest [28] or
virtual community [6] notions, aims to define cooperation between
caches with the same domain of interests, i.e. based on a semantic
distance function which estimates similarities of query profiles in
different caches. The probability of having a cache hit increases when
the part of similar queries increases. As a consequence the cost of
contacting caches far away is often inferior to the gain of sibling hits.

Site 1 Site 2
- &

;

" des || des
& | e

ded

\\
N >

A,

<«—— Semantic proximity D Dual cache

| Eukaryota community </ Object cache

(a) Query caches and semantic proximity

Semantic caching in large scale querying systems

Site 1 Site 2

des dc4 de2

¢

<«— Physic proximity D Dual cache

O Query cache
<> Object cache

(b) Object caches and physic proximity

Figure 4. Proximity based resolution in dual cache

Choosing a relevant proximity depends on the application and grid
context. Nevertheless dual cache allows applying distinct proximities
for the object and the query cache. In this paper, we will focus on physic
proximity resolution for object caches and semantic proximity
resolution for query caches, as illustrated in figures 4(a) and 4(b). On
the one hand object making cooperate object caches in a same location
avoids some high length data transfers. On the other hand, making
query caches having the same interests cooperate raises the probability
ofhaving cache hits and reduces evaluation load on servers.

In addition to propose different groups for query and objects caches, itis
also possible to choose distinct resolution protocols. While one may use
a flooding resolution protocol as adaptations of Internet Cache Protocol
(ICP) [34] or Hyper Text Caching Protocol (HTCP) [33], a catalogue
based approach as in a Cache Digests (CD) [27] or summaries [15] can
be chosen for the other one.

3 Performance analysis

This section reports our experimentations using semantic caching to
improve querying in a middleware for data management in grids. Our
main purpose is to compare existing semantic caching solutions to dual
cache. First experiments analyze environment impact on caching,
whereas the third one focuses on performances of different semantic
caches in data querying in a grid context. Finally, the last experiment
analyzes the impact of dual cache cooperations.

3.1 Testbed configuration
Experiments have been done in a grid data management middleware,

with bioinformatics data. This section presents the testbed configura-
tion: the experimental data set and query server, caches under test, query

43

44

Laurent d'Orazio, Claudia Roncancio, Cyril Labbé, Fabrice Jouanot

management in the different caches, workload generation and
performance metrics.

Experimental data set and query server

Experiments have been done using the Swiss-Prot [3] biological
database. It consists of a large ASCII file (750Mb) composed of about
210,000 sequence entries, each of then identified by an identifier.
Gedeon middleware [32] provides a direct access to an entry through its
identifier. It also provides query evaluation capabilities. Queries are
composed of conjunctions and disjunctions of selection terms of the
formAttribute name op value.Inthe particular case of Swiss-
Prot, op is often the contain operator and value is often a string.
Evaluations result in a set of entries matching the query.

Caches under test

Predicate-based caching [19] presents a representative example of a
semantic cache based on strict consistency between queries and objects
without allowing replication of objects in the cache. This approach,
used in distributed DBMS [19] and web oriented databases [21], leads to
an optimal use of memory space but, consistency between queries and
objects in the cache has a cost.

On the other hand query result caching [12] allows object replication in
the cache. Such a replication prevents from focusing on consistency
between queries and objects. When a region (corresponding to the answer
of'a query) is replaced, all corresponding objects are discarded. However
ahigh level of replication and many redundant evaluations can occur.

Finally, elementary cache presents a representative example of a simple
cache for a querying system. Such a cache does not consider query
capabilities inside the cache. That is why it can be seen as a query result
cache without query manager.

A Java and Fractal [4] version of ACS [14] has been used to instantiate
the four caches under test: dual cache, predicate based cache, query
result cache and elementary cache. All caches under test use LRU
replacement strategy. In presented experiments, the cache size goes
from 0.1 to 0.9 Gb and in all cases dual cache uses a size of 10 Mb for its
query cache. When we studied the impact of workload, a 0.5 Gb size
caches has been used. This is large enough to be efficient but not so large
to prevent the deployment of other applications.

Semantic caching in large scale querying systems

Query manager

Due to the server querying capabilities, the instantiated query manager
for the three semantic caches only cares of query containment using
query signature [8]. Query matching only cares on detecting if a query
is included in a cache entry and query capabilities are reduced to
selection and conjunction operators. In this configuration partial hits
never occur.

Workload generation

Classical workloads used in benchmarks (TPC [29], proxy [1] and
database [11] Wisconsin, and Polygraph [24] for instance) do not
consider semantic locality, whereas we consider it as an important
behavior for semantic caching. We use R,, a synthetic semantic

workload [23]. Queries correspond to progressive refinements.

The first query is general and following ones are more and more precise
and thus reduce the set of matching elements. In an R, workload, x is
the ratio of subsumed queries. For example, with R.,, half of queries
will be issued by constraining former queries. R, is equivalent to a
uniform workload used in [8]. It is not the most suitable for semantic
caching since it assumes queries do not present semantic locality.
However, if a semantic cache is efficient in this context, it ensures this
cache to be interesting for other access patterns. In presented
experiments, workload is composed of queries corresponding to a
single selection term, or to conjunctions of between two to four
selection terms. In presented experiments, the chosen workload goes
from R, to R,,. The impact of the cache size is studied with R, since it
seems to be representative of our application context.

Performance metrics

One of the most important metrics to study is the mean response time
which is strongly related to the hit ratio. But the server's load and the
amount of data transferred from servers to clients are also important
metrics to be taken into account. As a matter of fact using a cache saves
servers and network resources. As a consequence selected performance
metrics are: mean response time, (exact and extended) hit ratio and the
amount of data transferred.

45

46

Laurent d'Orazio, Claudia Roncancio, Cyril Labbé, Fabrice Jouanot

3.2 Impactof the experimental context

First experiments have been done with a single server and a single client
having the same characteristics (dual-Xeon 3 Ghz, 2 Gb memory, SCSI
disk). Such performance analysis aims to understand the comportment
of different caches with respect to their size and to semantic locality.
The client and the server are connected via an internal 1 Gb network.
Obviously, communications can be neglected in such experiments, as
well as load on servers. However, most interpretations are valid in
distributed and loaded contexts. In all experiments presented in this
section, each workload corresponds to 100 queries (according to a
given semantic locality).

3.2.1 Impact of semantic locality

Figures 5 present the impact of semantic locality on the response time
(5(a)), the ratio of queries resolved by caches (5(b)) and the amount of
data transferred between the client/cache and the server (5(c)) for a
system without cache, with an elementary cache, and with the different
semantic caches. The size of the cache is fixed to 0.5 Gb (with 10 Mb
allocated to the object cache in a dual cache).

i an
o Without cache 80
L 70 rl——/.\. —=—Elemertary cache
—m—Elementary cache
1% o —+—Query result cache
—w—Query result cache S0
0 40 —a—P redica s-hased
) —x—Predicdebased 30 cache
tae ——Dual cache
s ——Dual cache 0
10
1} T T T d o T T T
0 a0 60 a0 o 30 B0 80
Semantic locality (%) Semantic locality (%)
(a) Mean response time (s) (b) Ratio of queries resolved by the server (%)

awithout cache
WElemertary cache
mCuery result cache

OF redicate-bassd cache
B0l cachs

o 30 B0 Q0
Semantic locality (%)

© Volume of data transferred (Gb)

Figure 5. Impact of semantic locality (0.5 Gb cache)

Semantic caching in large scale querying systems

Such figures confirm that using a cache in a distributed querying system
enables to reduce bandwidth consumption and load on servers.
However, it has to be noted that results in a system without cache are
better than the ones in a system with an elementary cache (except for a
90 % semantic locality). In fact, with a cache data flows are read both by
the cache and the client. Since gain of an elementary cache is quite low
in such a context, it does not compensate for this double processing. On
the contrary, semantic caching largely compensates for reading
processes. In fact, semantic caches enable reducing load on servers,
since many queries generate exact or extended hits. As a consequence,
the amount of data transferred is greatly reduced. That is why, mean
response times with semantic caches are generally better than mean
response times without cache or with an elementary cache. However, it
is important to note, that without any semantic locality (R,), only dual
cache is more relevant than a system without cache. Such a result shows
the efficiency of a dual cache, as well as it confirms that a semantic
cache is reserved to contexts presenting semantic locality.

Results confirm that semantic cache efficiency increases with semantic
locality. In fact, the more query are subsumed, the higher is the cache
reuse ratio. That is why for the different semantic caches, load on
servers decrease. Note that data transfers also decrease since queries are
more precise when semantic locality increase and, as a consequence,
answers are smaller, as it can be observed with a system without cache.
That is why an elementary cache is also impacted by semantic locality,
as itis illustrated by the evolution of mean response time.

45 4
40 4
354
30 A
25 4
20 4 —a— |kertifiers list
15 4 ACCESEES

10 4
5 4
o

—e— Query accesses

o 30 B0 a0
Semantic locality (%)

Figure 6. Impact of semantic locality on dual cache (0.5 Gb)

It is important to note that for a dual cache, load on servers corresponds
to accesses both by queries or identifiers lists. Figure 6 shows that load
in terms of queries is not impacted by semantic locality. In fact, even if
the query cache is small (10 Mb), it can manage many query answers.
On the contrary, since the object cache is more limited according to
entries manipulated, it is impacted by semantic locality. That is why load
in terms of identifiers lists decreases when semantic locality increases.

47

48

Laurent d'Orazio, Claudia Roncancio, Cyril Labbé, Fabrice Jouanot

3.2.2 Impact of the size of the cache

18 el
16 knﬂ_éﬂh—n & Without cache B0 s B
. ~=0 8 e Sy —=—Emenary cace
—m—E I dary vachie
12 B0
—e—Guuery rzsult zeche
10 e —+— Uty reault cache 50
8 e A0 ——Predeasauiad
& = —a—F redic ebased 5 & ek
5 cache 5 Dl it
—r—Dual cache
2 ()
o+ 0 T T g
100 oo 800 00 00 200
Size of the cache Vi) Size df the cache (Vi)
(a) Mean response time (s) (b) Ratio of queries resolved by the server
(%0)
F
]
5 BWithout cache
4 WElementary cache
mQuery result cache
3 0P redicate-based cache
2 BDusl cache
1
. | :
100 500 00
Size of the cache (Mb)

(c) Volume of data transferred (Gb)

Figure 7. Impact of size of the cache (60 % semantic locality)

Figures 7 present the impact of the size of the cache on the response time
(7(a)), the ratio of queries resolved by caches (7(b)) and the amount of
data transferred between the client/cache and the server (7(c)) for a
system without cache, with an elementary cache, and with the different
semantic caches. The semantic locality is fixed to 60 %, simulating a
context with a high semantic locality, an usual situation in bioinformatics
data querying. It has to be noted that for dual cache, only the size of the
object cache varies, whereas the size of the query cache is fixed to 10 Mb.

A first analysis confirms that using a semantic cache is relevant with a
high semantic locality. In fact, even with a big size cache, load on
servers, as well as bandwidth consumption, are quite more important
with an elementary cache than with semantic caches.

About semantic caching, results confirm that efficiency of a cache is
proportional to the size. In fact, the bigger is a cache, the higher are
exact and extended hit rates. It is important to note that when the size of
a cache enables to store the entire data source, all caches present similar
results in terms of load on servers and bandwidth consumption.
However, it has to be noted that query result cache is less efficient than
predicate-based cache and dual cache, due to subsumed query

Semantic caching in large scale querying systems

management. In fact, when a query is included in a cache entry, the
answer is processed locally, but not kept in the cache. As a consequence,
successive refinements will lead the cache to use the same entry without
taking advantage of previous computations.

25 4

20 +

15 - —4— Qery accesses

—=— |centifiers list
e acCesses

T T
100 500 Q00
Size of the cache (Mb)

Figure 8. Impact of the size of dual cache

Recall that dual cache accesses servers to evaluate queries and to
retrieve objects given a list of identifiers. Figure 8 shows that the size of
the cache does not impact query accesses. In fact, even for a 100 Mb
dual cache, the query cache is big enough to store many queries.
However, results confirm the intuition that the size of the cache directly
impacts identifiers list accesses.

3.3 Semantic caching in a grid context

Table 1. Technical behaviors of nodes of Grid5000 used for experimentations

Site Machine Processor IMemory| Disk
Lille [BM eServer 326 |AMD Opteron 248 2.2Ghz UGB [SATA
INancy HP ProLiant 2x AMD Opteron 246 2.0GHz 2GB [SATA
DL145G2
Rennes Sun Fire V20z ~ Px AMD Opteron 248 2.2GHz 2GB |SCSI
Sophia-AntipolisfSun Fire X4100 Px dual core AMD Opteron 275 2.2GHz 4GB [SAS
Toulouse Sun Fire V20z JAMD Opteron 248 2.2Ghz RGB [SCSI

This experiment aims to analyze the impact of different semantic
caches in a grid context. Experiments have been performed on
Grid5000 [7], the very large French platform for grid experiments.
Technical behaviors of nodes of Grid5000 used for this experiment are
presented in table 1. Query evaluation involves different servers
distributed across the grid. Data has been distributed in three equivalent
size files, managed by three different clusters. Clusters used in this
experiment are located at Lille, Rennes and Sophia-Antipolis. When a
query is submitted, it is forwarded to the three clusters for a parallel
evaluation. As usual in grids, clients are distributed. Fifty clients

50

Laurent d'Orazio, Claudia Roncancio, Cyril Labbé, Fabrice Jouanot

uniformly distributed on four clusters (twelve at Lille, thirteen at
Rennes, thirteen at Sophia-Antipolis and twelve at Toulouse) generate
queries according to the R,, workload and each of them uses its own 0.5
Gb cache. The total number of submitted queries is 5000. For a single
experiment all caches are of the same type, either predicate-based
cache, query result cache or dual cache.

Table 2. Specific performance metrics for semantic caches in a grid context

Semantic | Response Exact Extended | Loadon Queries Data
cache Time hit hit servers |evaluated on transfered
servers

Query result [13.52 s 19.16 % 56.38 % 04,46 % 24.46 % 187.526 Gb
cache

Predicate- [71.01s 26.46 % 49.70 % 23.84 % 23.84 % 185.464 Gb
based cache

Dual cache #7.26 s 52.94% 39.02% 23,34 % 8.04 % 132.197 Gb

Table 2 describes the impact of semantic caching in a middleware for
data management in grids. It can be noted that caches lead to a dramatic
reduction in the number of communications with the servers since
many queries result in exact or extended hits. As a consequence, the
amount of data transferred from servers to clients is highly reduced. We
can then conclude that a system with caches is more robust, as it saves
server and network resources.

Experiment shows that dual cache is the best approach for such a
context, since with a dual cache the mean response time is the lowest
(about a 35 % reduction in comparison to other semantic caches). Such
an improvement can be explained by the reduction of the amount of
data transferred between servers and clients, as well as the greatest
exact and extended hit rates. In fact, dual cache enables to keep a large
number of queries, regardless the storage of the corresponding objects.
That is why even if load on servers is the same for all semantic caches
(about 24 %), it has to be noted that for dual cache only a third (about 8
%) consists of query evaluations, whereas two thirds consist of
identifier lists. As a consequence, when data accesses are more efficient
by identifiers than by the corresponding queries, using dual cache is
recommended.

3.4 Cooperative dual cache
A last experiment enables to show the impact of cache cooperation in

dual cache. Query evaluation involves different servers located in three
different sites (Nancy, Rennes and Sophia-Antipolis, which technical

Semantic caching in large scale querying systems

behaviors are presented in table 1). Fifty clients uniformly distributed
on four clusters (twelve at Lille, thirteen at Rennes, thirteen at Sophia-
Antipolis and twelve at Toulouse, which technical behaviors are
presented in table 1) generate queries according to a specific R,,
workload and each of them uses its own 325 Mb cache (corresponding
to half of Swiss-Prot), with 10 Mb allocated to the object cache.

In addition to the semantic locality, this specific R,, workload
introduces the notion of community. Community is used to group users
having the same interests. The requests from the members of a
community tend to focus on a particular subset of records. In the
particular case of Swiss-Prot, we have created groups of interest
according to the tree of life. Each record belongs to one of four different
groups: Eukaryota, Archaea, Viruses and Bacteria. Thus,
for each of these groups, we defined a community of users supposed to
be specifically interested in this group. In our experiments, 60 % of the
queries issued by any users concerns the records shared by its
community. The last 40 % requests are uniformly distributed among the
other records. The total number of submitted queries is 2500.

Results present the different metrics (response time, load on servers and
amount of data transferred between clients and servers) for a basic dual
cache, i.e. a dual cache resolving both query and object misses directly
via servers, and a cooperative dual cache, resolving query misses
according to a semantic proximity (in this experiments query caches
belonging to a same community cooperate) and resolving object misses
according to a physic proximity (in this experiments object caches in a
same cluster cooperate). In this context, a flooding approach has been
used for both query caches and object caches cooperations.

Table 3. Specific performance metrics for dual caches in a grid context

Dual cache |Response time| Evaluationon | Transfered data | Transfered data between
servers clients and servers
Basic 10335 34% 30,4 Gb 30,4 Gb
Cooperative 2445 9% 25,1 Gb 11,5 Gb

Table 3 presents results for the different dual caches. Results show that
using cooperation enables to reduce mean response time (about a 70 %
reduction). On the one hand, semantic proximity between query caches
enables to reduce the number of evaluations on servers, as well as the
amount of data transferred, since data sources are used via identifier
accesses avoiding retrieving already stored objects. On the other hand,

51

52

Laurent d'Orazio, Claudia Roncancio, Cyril Labbé, Fabrice Jouanot

physic proximity between object caches enables load balancing,
reducing bandwidth consumption between clients and servers. In fact,
some objects are retrieved via object caches belonging in the same
cluster, providing high speed data access.

4 Related work

This paper tackles different domains related to caching. In this section
we present some of the main works related to each domain: grid,
semantic and cooperative caching.

Our experiments compared dual cache to predicate-based caching [19]
and query result caching [12] which are representative of the two main
approaches used in semantic caching, those separating query and
objects [19, 21] and those handling them together [8, 12]. However,
there are other proposals. Finkelstein [17] proposes to cache parts of
queries that can be reused for further evaluations. This solution
considers semantic aspects but does not manage extended hits.
Roussopoulos [26] proposes a cache of views in a centralized system.
Caching views is quite interesting, but as object caching is not
considered such a solution may be of limited use in a distributed
environment. On the same principles, Lee et al. [22] proposes caching
views if they cannot be obtained using already materialized ones.

Resolution protocols have been intensively studied in web caching. In
this context many protocols have been proposed. They can be
decomposed in two main categories [5]: flooding and catalogue based.
In this paper, a flooding resolution has been used. This choice is
orthogonal to proximity-based resolution and can be changed
according to the context.

None of the mentioned works have been deployed in a grid. Uddin
Ahmed et al. [2] and Cardenas et al. [10] do by adopting a mediation
like approach [35]. Intelligent Cache Management [2] focuses on the
problem of network latency. It proposes to store data in distributed DB
replicated across the grid. User SQL queries are submitted to the cache
which decomposes them into sub-queries for local and remote
domains, and builds afterwards the final results. Cardenas et al. [10]
propose a distributed cache service for grid computing. Such a service
offers semantic cache functionalities by using hierarchical cache
architecture. A kind of global cache federates grid node caches by using
a global catalogue. A metadata catalogue helps to localize data in data
sources. Finally some proposals focus on load balancing and fault

Semantic caching in large scale querying systems

tolerance in large scale environments, like dCache [16], a cache for
grids, used for data management in particles physics. Our proposal is
orthogonal to these works.

Dual cache is not the first system combining two caches. For example,
Trystram et al. [30] proposes a cache solution for parallel multiple
sequence alignments. Such solution is composed of a cache for pair
wise alignments and a second one to store multiple alignments. Pair
wise entries are used to compute multiple ones. Contrary to dual cache,
the proposal of Trystram et al. [30] is very context specific.

5 Conclusion

This paper presents a cache solution to improve querying in a grid
context. The dual cache is based on the cooperation of a query cache
and an object cache. This proposition has been implemented, tested and
compared to other semantic cache propositions. Experiments have
been done in a grid context using a data management middleware.
Results prove the efficiency of our solution in this context. Our
proposal saves computation time since it maximizes query caching and
saves memory as the object cache avoids "in cache object replication".
Cooperation between the two caches never introduces overhead related
to consistency issues. Moreover this approach allows tuned
configuration for each cache. This is particularly useful in a grid
environment where caches may be deployed on heterogeneous sites.

Furthermore, thanks to a clear separation of calculus caching (query
cache) and access caching (object cache) dual cache leads to new
opportunities. First different kind of querying capabilities (filtering,
grouping, ordering, etc.) may be used in the cache solution. Then, it is
possible to resolve a cache miss in a different way for the query cache
and the object cache, according to specific cooperation policies related
to semantic or physic proximity.

Our solution seems well suited for contexts where shared data has low
update rate. However, even in this context, consistency issues have to
be developed. In addition, future work involves the study of various
application contexts including warehouse oriented systems. We also
plan more in-deep work on cooperation policies and replacement
strategies, specifically cooperative ones. For example, to avoid entries
to be evicted, they can be placed in other caches. Finally, we are
interested in context-aware caching strategies for developing self-
adaptive and autonomous caches in dynamic environments.

53

54

Laurent d'Orazio, Claudia Roncancio, Cyril Labbé, Fabrice Jouanot

Acknowledgement

Thanks to S. Albrand for remarks on this paper, O.Valentin and Y.
Denneulin for their contribution to this work, the Gedeon and Hadas
teams for fruitful discussions, Ministere délegué a I'Enseignement
supérieur et a la Recherche and Institut National Polytechnique de
Grenoble for financial support.

References

(1]

(2]

(6]

Jussara Almeida and Pei Cao. Measuring proxy performance with
the Wisconsin Proxy Benchmark. Computer Networks and ISDN
Systems, 30(22-23):2179-2192, 1998.

Mobin Uddin Ahmed, Raja Asad Zaheer, and M. Abdul Qadir.
Intelligent cache management for data grid. In The Australian
workshop on Grid computing and e-research, pages 5—12,2005.

Brigitte Boeckmann, Amos Bairoch, Rolf Apweiler, Marie-
Claude Blatter, Anne Estreicher, Elisabteh Gasteiger, Maria J.
Martin, Karine Michoud, Claire O'Donovan, Isabelle Phan,
Sandrine Pilbout, and Michel Schneider. The swissprot protein
knowledgebase and its supplement trembl in 2003. Nucleic Acids
Res, 31(1):365-370,2003.

Eric Bruneton, Thierry Coupaye, Matthieu Leclerq, Vivien
Quéma, and Jean-Bernard Stefani. An Open Component model
and its support in Java. In The International symposium in
Component based Software Engineering, pages 7-22,2004.

Greg Barish and Katia Obraczka. World Wide Web caching:
Trends and techniques. Communications Magazine, IEEE,
38(5):178-184,2000.

Lionel Brunie, Jean-Marc Pierson, and David Coquil. Semantic
collaborative web caching. In Proceedings of the International
Conference on Web Information Systems Engineering, pages
30-42,2002.

Franck Cappello. Grid'5000: A large scale, reconfigurable,
controlable and monitorable grid platform. In The IEEE/ACM
International Workshop on Grid Computing, 2005.

Semantic caching in large scale querying systems

[8] Boris Chidlovskii and Uwe M. Borghoff. Semantic caching of web
queries. The Very Large Data Bases Journal, 9(1):2—-17,2000.

[9] Anawat Chankhunthod, Peter B. Danzig, Chuck Neerdaels,
Michael F. Schwartz, and Kurt J. Worrell. A hierarchical internet
object cache. In USENIX Annual Technical Conference, pages
153-164,1996.

[10] Yonny Cardenas, Jean-Marc Pierson, and Lionel Brunie. Uniform
distributed cache service for grid computing. In The International
Workshop on Database and Expert Systems Applications, pages
351-355,2005.

[11] David J. DeWitt. The wisconsin benchmark: Past, present, and
future. In The Benchmark Handbook. Morgan Kaufmann, 1993.

[12] Shaul Dar, Michael J. Franklin, Bjorn T. Jonsson, Divesh
Srivastava, and Michael Tan. Semantic data caching and
replacement. In Proceedings of the international conference on
Very Large Data Bases, pages 330-341, 1996.

[13] Laurent d'Orazio, Fabrice Jouanot, Yves Denneulin, Cyril Labbé,
Claudia Roncancio, and Olivier Valentin. Distributed semantic
caching in grid middleware. In Proceedings of the international
conference on Database and Expert Systems Applications, 2007.

[14] Laurent d'Orazio, Fabrice Jouanot, Cyril Labbé, and Claudia
Roncancio. Building adaptable cache services. In Proceedings of
the international workshop on middleware for grid computing,
pages 1-6,2005

[15] Li Fan, Pei Cao, Jussara Almeida, and Andrei Z. Broder. Summary
cache: a scalable wide-area web cache sharing protocol.
IEEE/ACM Transactions on Networking, 8(3):281-293,2000.

[16] Patrick Fuhrmann and Volker Gulzow. dcache, storage system for
the future. In The European Conference on Parallel and
Distributed Computing, pages 1106—1113,2006.

[17] Sheldon Finkelstein. Common expression analysis in database
applications. In Proceedings of the ACM SIGMOD international
conference on Management of data, pages 235-245, 1982.

[18] Syam Gadde, Jeff Chase, and Michael Rabinovich. A taste of
crispy Squid. In Proceedings of the Workshop on Internet Server
Performance, 1998.

55

56

Laurent d'Orazio, Claudia Roncancio, Cyril Labbé, Fabrice Jouanot

[19] Arthur M. Keller and Julie Basu. A predicate-based caching
scheme for clientserver database architectures. The VLDB
Journal, 5(1):35-47,1996.

[20] Ari Luotonen and Kevin Altis. World-wide web proxies. In The
International World Wide Web Conference, pages 147—154, 1994.

[21] Dongwon Lee and Wesley W. Chu. Semantic caching via query
matching for web sources. In The international conference on
Information and knowledge management, pages 77—85, 1999.

[22] Ken. C. K. Lee, H. V. Leong, and Antonio Si. Semantic query
caching in a mobile environment. ACM SIGMOBILE Mobile
Computing and Communications Review, 3(2):28-36, 1999.

[23] Qiong Luo, Jeffrey F. Naughton, Rajasekar Krishnamurthy, Pei
Cao, and Yunrui Li. Active query caching for database web
servers. In The International Workshop on The World Wide Web
and Databases, pages 92—104,2001.

[24] Polygraph. http://polygraph.ircache.net/.

[25] Michael Rabinovich, Jeff Chase, and Syam Gadde. Not all hits are
created equal: cooperative proxy caching over a wide-area
network. Computer Networks and ISDN Systems, 30(22-
23):2253-2259,1998.

[26] Nicholas Roussopoulos. An incremental access method for
viewcache: concept, algorithms, and cost analysis. ACM
Transactions on Database Systems, 16(3):535-563, 1991.

[27] Alex Rousskov and Duane Wessels. Cache digests. Computer
Networks and ISDN Systems, 30(22-23):2155-2168, 1998.

[28] T. T. Tay, Y. Feng, and M. N. Wijeysundera. A distributed internet
caching system. In The IEEE Conference on Local Computer
Networks, pages 624—633,2000.

[29] TPC. http://www.tpc.org/.

[30] Denis Trystram and Jaroslaw Zola. Parallel multiple sequence
alignment with decentralized cache support. In The European
Conference on Parallel and Distributed Computing, pages
1217-1226,2005.

Semantic caching in large scale querying systems
g g querying sy

[31] Tuyet-Trinh Vu and Christine Collet. Adaptable query evaluation
using gbf. In Proceedings of the International Database
Engineering and Applications Symposium, pages 265-270, 2004.

[32] Olivier Valentin, Fabrice Jouanot, Laurent d'Orazio, Yves
Denneulin, Claudia Roncancio, Cyril Labbé¢, Christophe
Blanchet, Pierre Sens, and Claude Bonnard. Gedeon, un
intergiciel pour grille de données. In Conférence Francaise en
Systéeme d'Exploitation, 2006.

[33] Paul Vixie and DuaneWessels. Rfc 2756: Hyper text caching
protocol (htcp/0.0), 2000.

[34] Duane Wessels and K Clafty. ICP and the Squid Web cache. IEEE
Journal on Selected Areas in Communication, 16(3):345-357,
1998.

[35] Gio Wiederhold. Mediators in the architecture of future
information systems. Computer, 25(3):38-49, 1992.

57

