REVISTA COLOMBIANA DE COMPUTACION
Volumen 9, nimero 1
Pags. 58 - 71

Optimization's trajectory of an
automatic manipulator using neural
networks

Fedossova A.V. " Santoyo J.S. '
Fecha de Recibido: 06/05/2008; Fecha de Aprobacion: 09/08/2008

Abstract

Neural networks are used to optimize the trajectory of an automatic
manipulator. First, it is had an automatic manipulator of three
degrees of freedom. The proposed problem consists of finding total
optimal time of displacements which must adjust the trajectory
using neural networks trained for that purpose. It is an optimization
problem subject to an infinite set of restrictions. For to solve is used
three types of neural networks of MATLAB 7.0.1

Keywords: Neural Networks, Optimization, Semi-infinite
programming

1 Problem Definition

We considered a robot arm (manipulator) of j degrees of freedom 01, 62
and 6j (j links). Each link has a length and mass associated. Since the
robot position varies with time we can define a robot trajectory as a
parametric curve:

B(T) = (6(T).0a(T). .. &(T). Te=[0.Ty].

where 1 is the number of degrees of freedom and Tf is the total travel

time. Let . ” indicate the derivative with respect to the time t and ' ”
the one with respect to T.

We formulated the optimization problem of optimal trajectory follows
[8]. Suppose that we know n points in the trajectory of the manipulator.
Are

[61(T1), 01(TR), ..., 01(T7)], [F2(T1), B2(T%), ..., 0a(Tn)]. ... [0 (T1), Oy (T2), O(T3)]

* National University of Colombia - Campus Bogota, Avenue Street 30 N° 45-03 —
Bogota, Colombia, afedosova@unal.edu.co

T Autonomous University of Bucaramanga, Street 48 No. 39 — 234 — Bucaramanga,
Colombia, jsdiaz@unab.edu.co

Optimization's trajectory of an automatic manipulator using neural networks 59

vector points (nodes) which passes the trajectory of automatic
manipulator. The proposed problem consists of finding total optimal
time of displacements which must adjust to the trajectory using cubic
splines constrained by the speed, acceleration and jerk. We get#, <¢,<...
<t, asequence at time where ¢ this is the time where the robot is in the
position [01 (T), 62 (T), ..., 6 (T})]. Natural constraints applied to the
parametric curve are:

b of AR
;=l (E) > 0, Te (Dan)
et dfl
a0 =gl =0

d2e d?f
F(D) = m(Tﬂ #0

Ared =t,—t,d,=t,— t, ..., d,, =t,— t,, the displacement times. Is O,

cubic spline for the link i the robotic arm that approximates to 6,(#) in [#,,
tﬁ»l] N

Problem can then be formulated as SIP:

subject to |Q;J-ft.)| <Ci1
Q4 (8)] < Cig
Qi (1] < Cua

i N

d; >0 j=1,.,n—1;

where C;,,C,, and C; are the bounds for the velocity, acceleration and
jerk, respectively, on joint 7.

60 Fedossova A.V., Santoyo J.S.

We introduce

t=r{T), T €D, 1],

andis
9(T)=r'(T) >0, T€[0,1].
So the problem is reformulated as
r(0)=0
r(1) is minimum

P(T)>0 Te[0,1]

| 6

| <Gy
|6 | < Cia

167 | < Ciai=1,..,1
and

where C,,,C,, and C, are the bounds for the velocity, acceleration and
jerk, respectively, on joint i, and

0*(t) = 0(r—H(T)

is the parametric curve.

We get
T=r"Yt), te[0,t].
then, dT 1 1 1
dt dr 7(T) g(T)
dT

Optimization's trajectory of an automatic manipulator using neural networks

By the chain rule we get,
d. ., 4 d
b= = {01 (0)} = Z{05(T))
. gy(T)
0= 5
ST (D) = 5D (D)
9= g2(T)
v o @(T)
G-I
0= (1)

3(¢'(T))% — 9(T).9"(T)

fir

sy 28
g 05 (T) = 365(T) ~ s + 6(T).)

#(T)

Rewriting the constraints of previous model we have:

(—1).| 8; (D) 2 (-1)- Cyp,
(-1)

E.l 8 (1) = -1
if '
, 0'(T)
=] =22 i
then
(=1 8(T)
1— J >0,
Cij1 glT) —
Same way,
(1)1 8; (T)] = (=1)-Cja
we obtain (=1) , .

61

62

Fedossova A.V., Santoyo J.S.

and
W r g’[T)
s
Ciz 7(T) -
after
(=1)-| 8; (T)] = (-1)-Cya
and
(1) % s
ool 1 (D121,
where we obtain
o @) o 306 (1)) —g(T).9"(T)
(1) ﬂj (T) —3.€j (TJ'TTJ + Bj(Tj 2T
1— . >0,
Cj‘a QE(T)
where
pe{0,1},TE[0,1]
and
i=1223.
Problem can then be rewrite as SIP:
min 1 TV dT
e [oT)dT, (1)

subject to g(T) > 0

|0y | £ Cja

|6; (T)] < Cja

1 8; (T)] < Cja
i=1.213
YI'e[0,1],

Optimization's trajectory of an automatic manipulator using neural networks 63

where C,,C,, and C,, are the bounds for the velocity, acceleration and
jerk, respectively, on joint i. The end conditions velocity equal to zero,

that means

9 J — {] .
and eventually also acceleration equal to zero, .
éj: {]j
are satisfied for -
Tel[0T]

We consider with more detail the problem (1).

Mathematical model use B-Spline function in target function, then, it
lets bring a curve given by some nodes which should generate the
trajectory. A B-Spline is a linear combination of blending functions. A
B-Spline can be represented by:

n
Bk,s(t) = E IiBi,k,s(t).
i=1
Approximating function g(7) in:

€
F(z) = A o(T)dT,

the target function of problem is:

Flz)= Eag.r.;— ;
i=1

con a; = 0,
subject to constraints
Hy=g—¢>0
—1w 0.(T
g -1- 2 L

64

Fedossova A.V., Santoyo J.S.

v o g(T)
g, LIER 0 gy
¥ Cjz a {T)
' ! 2 _ 1"
1 %@ —3.9;.‘[:").1 g)} o) 2 (T”gg (;)(T)'g b
Hia=1- : >0,
Cj,:] ¢3(T)

wherepe { 0,1 },T£[0,1]and j=1,2,3.

The proposed problem consists of finding total optimal time of
displacements which must adjust to the trajectory using cubic splines
constrained by the speed, acceleration and jerk.

2 Types of Neural Networks used in MATLAB

2.1 Neural Network Toolbox - newgrnn
Design generalized regression neural network Syntax:
net = newgrnn(P,T,spread)

Generalized regression neural networks (grnns) are a kind of radial
basis network that is often used for function approximation. grnns can
be designed very quickly.

newgrnn(P,T,spread) takes three inputs,

P = RxQ matrix of Q input vectors
T = Sx Q matrix of Q target class vectors

spread. Spread of radial basis functions (default=1.0)
and returns a new generalized regression neural network.

The larger the spread, the smoother the function approximation. To fit
data very closely, use a spread smaller than the typical distance between
input vectors. To fit the data more smoothly, use a larger spread.

Optimization's trajectory of an automatic manipulator using neural networks

2.2 Neural Network Toolbox - newlind
Design linear layer. Syntax:

net = newlind(P,T,Pi)
Newlind (P, T, Pi) takes these input arguments,

P =R xQ matrix of Q input vectors
T =S x Q matrix of Q target class vectors
Pi=1xID cell array of initial input delay states

where each element Pi{i,k}is a Ri x Q matrix, and the default = [],and
returns a linear layer designed to output T (with minimum sum square
error) given input P.

2.3 Models

Design an optimization algorithm to solve a particular problem, it
involves the achievement of efficiency in terms of computational
runtime, analysis and selection of the most appropriate techniques to
achieve a level of generalization that allows apply and extend it to
solve other problems closely related.

2.3.1 First Model

First model has been developed using results from thesis of PhD. A.
Ismael F. Vaz. The present model is trained, and adapted a simulated a
neural network newgrnn of MATLAB. This network uses 50 inputs
and 50 outputs.

2.3.2 Second Model

Second model has been developed using own results of stochastic
outer approximations algorithm. The present model is trained, and
adapted a simulated a neural network newlind of MATLAB. This
network uses 50 inputs and 50 outputs.

2.3.3 Third Model

Third model uses results from thesis of PhD. Elke Haaren — Retagne.
This model is trained, and adapted a simulated a neural network
newgrnn of MATLAB. This network uses 20 inputs and 20 outputs.

The software based on neural network operates as follows:

65

66

Fedossova A.V., Santoyo J.S.

Step 0: Input:

Fromarandom X1 e X°

Fol=Fo02=Fo3=Y1=Y2=Y3=0;

Step 1: Random X1.

Step 2: Apply to netalil(X1); it's trains, adapts and simulates with
random X1 where is obtains Fol and Y'1.

Step 3: Apply to netali2(X1); it's trains, adapts and simulates with
random X 1 where is obtains Fo2 and Y2.

Step 4: Apply to netali3(X1); it's trains, adapts and simulates with
random X1 and finally is obtains Fo3 and Y3.

Step 5: Saves all results of the parameters X1, Fol, Fo2, Fo3,Y1,Y2y
Y3 inasystem log.

Step 6: Show final results.

2.3.4 Parameters Description
Parameters used in the three models described above are:

“X1” represents the initial value of the variable used in each iteration.
“Fol (objective function of the first model)” that's the value of
objective function at the optimal point.

“Fo2 (objective function of the second model)” that's the value of
objective function at the optimal point.

“Fo3 (objective function of the third model)” that's the value of
objective function at the optimal point.

“Y1” that's the optimal value of X variable in the model 1.

“Y2” that's the optimal value of X variable in the model 2.

“Y3” that's the optimal value of X variable in the model 3.

The figure below shows an approximation to networks that were used in
the prototype, considering that number of inputs in the prototype are 50,
number of hidden layers are 12 and number of outputs 9. The plot is
complex graph.

Outputs
Hidden

- layers
Inputs

Figure 1. Neural Network Graph

Optimization's trajectory of an automatic manipulator using neural networks 67

3 Numerical Experiments

Tables 1 to 9 are some results of numerical experiments. These tables
are composed of a variable Input Vector that represents the initial value
ofthe vector used in each run, Vector Output is the optimal end value of
final vector, Function Value FO is the value of the objective function at
the optimal point.

Below in table 1 can be seen the results of a first run using model 1. In
table 2 can be seen the results of a first run using model 2. In table 3 can
be seen the results of a first run using model 3. In tables 1, 2 and 3 can
compare the results using the same initial point. The most optimal result
is the model 2 (second neural network).

Table 1. First Model — Vaz's trajectory No.1 [4]

Variables Values
Input Vector 1.420310 1.420310 1.420310 1.420310 1.420310 1.420310
1.420310 1.420310 1.420310
Output Vector 1.188585 0.974499 1.029212 0.988390 1.135009 1.188996

1.151483 1.020536 1.019925

Function Value FO

1.082927

Table 2. Second model —Trajectory with own values No.2 [13]

Variables Values
Input Vector 1.420310 1.420310 1.420310 1.420310 1.420310 1.420310
1.420310 1.420310 1.420310
Output Vector 0.099889 0.592549 1.020579 1.448669 1.311346 1.608055

0.842467 0.667546 0.280346

Function Value FO 1.081744
Table 3. Third model — Elke's trajectory No. 3 [5]
Variables Values
Input Vector 1.420310 1.420310 1.420310 1.420310 1.420310 1.420310
1.420310 1.420310 1.420310
Output Vector 1.093462 1.093511 1.093276 1.093472 1.093350 1.093851

1.093511 1.093340 1.093773

Function Value FO

1.093499

68

Fedossova A.V., Santoyo J.S.

Below in table 4 can be seen the results of'a second run using model 1. In
table 5 can be seen the results of a second run using model 2. In table 6
can be seen the results of a second run using model 3. In tables 4, 5 and 6
can compare the results using the same initial point. The most optimal
resultis the model 2 (second neural network).

Table 4. First model — Vaz's trajectory No.4 [4]

Variables Values
Input Vector 1.460300 1.386800 1.809300 1.826900 1.789600 2.070400
1.742300 1.558700 1.219900
Output Vector 1.193742 0.972270 1.064249 1.022088 1.179767 1.275979

1.190694 1.032919 1.006983

Function Value FO

1.120303

Table 5. Second model —Trajectory with own values No.5[13]

Variables Values
Input Vector 1.460300 1.386800 1.809300 1.826900 1.789600 2.070400
1.742300 1.558700 1.219900
Output Vector 0.116333 0.606328 0.860627 1.281481 1.19495 1.340740

0.710066 0.610640 0.362755

Function Value FO 0.947999
Table 6. Third model — Elke's trajectory No 6 [5]
Variables Values
Input Vector 1.460300 1.386800 1.809300 1.826900 1.789600 2.070400
1.742300 1.558700 1.219900
Output Vector 1.093462 1.093511 1.093314 1.093493 1.093378 1.093819

1.093521 1.093345 1.093771

Function Value FO

1.093509

Below in table 7 can be seen the results of a third run using model 1. In
table 8 can be seen the results of a third run using model 2. In table 9 can
be seen the results of a third run using model 3. In tables 7, 8 and 9 can
compare the results using the same initial point. Finally, the most
optimal result is the model 2 (second neural network).

Optimization's trajectory of an automatic manipulator using neural networks

Table 7. First model — Vaz's trajectory No.7 [4]

Variables Values
Input Vector 1.736200 1.614400 1.601800 1.569900 1.586400 1.614500
1.633300 1.507000 1.679300
Output Vector 1.229691 0.987925 1.045206 1.000451 1.155006 1.215173

1.177244 1.028245 1.037305

Function Value FO

1.102050

Table 8. Second model — Trajectory with own values No 8 [13]

Variables Values
Input Vector 1.736200 1.614400 1.601800 1.569900 1.586400 1.614500
1.633300 1.507000 1.679300
Output Vector 0.229783 0.512740 0.945951 1.387158 1.243050 1.528205

0.754887 0.631899 0.173850

Function Value FO 1.017878
Table 9. Third model — Elke's trajectory No 9 [5]
Variables Values
Input Vector 1.736200 1.614400 1.601800 1.569900 1.586400 1.614500
1.633300 1.507000 1.679300
Output Vector 1.093475 1.093515 1.09285 1.093475 1.093356 1.093847

1.093515 1.093342 1.093770

Function Value FO

1.093503

These results were compared with values obtained with other authors to
solve the same problem and had noticed that we have good
approximations (see Function Value FO in tables). This indicates that
actually has succeeded to optimize the trajectory of an automatic
manipulator using Neural Networks.

4 Conclusions

One of the major achievements has been to use concepts of semi-
infinite programming and special Neural Networks for solving
problems related to robotics.

69

70

Fedossova A.V., Santoyo J.S.

Results obtained with Neural Networks by means of the computing tool
prototype base don MATLAB, are appropriate for primary target of the
research. Despite it is recommended for later studies, to use exactly
initial and end points of trajectory in order to consider more
appropriately, level of obtained improvement, since these comparisons
were made starting off of itself model of trajectory and having like
primary target minimize manipulator's time of route.

The use of MATLAB like programming tool, optimization, calculation
and interface, facilitates the development to solve mathematical
problems of high complexity, since development platforms such as
C++, Java, among others, require of programming of mathematical
tools that MATLAB already has implemented in his toolboxes, which
allows saving effort of programming and lines of code.

Recent research opens the doors for development this thematic in the
future, based mainly in solution generalization to problem created, in
search an optimal trajectory for different types from robots, in addition
to its physical implementation in a real robot, where it is necessary to
consider a sizing of all the mechanical parameters and control, applied
in a specific solution within an objective function.

References

[1] Fedossova A., Kafarov V., Mahecha Bohérquez D.P., Outer
Approximations Algorithm for the Air Pollution Control Problem.
2004..

[2] Fedossova A., Stochastic outer approximations algorithms for
convex semi-infinite programming problems, Ph.D. Thesis,
Moscow State University, Moscow, 2000, (in Russian).

[3] Volkov Y.V., Zavriev S.K., A general Stochastic Outer
Approximations Method, SIAM J. Control Optim., 35 (4), 1997,
pp. 1387-1421.

[4] A.Ismael F. Vaz, Applications, methods and tools y for SIP, Ph.D.
Thesis. Minho University, 2003, (in Portuguese).

[5] Elke Haaren - Retagne. A semi-infinite programming algorithm for
trajectory planning, Ph.D. Thesis. Trier University, 1992.

[6] Belén Melian, José A. Moreno Pérez, J. Marcos Moreno Vega.
Metaheuristics: A global view, Spain - 2003.

Optimization's trajectory of an automatic manipulator using neural networks

[7] Barbolla, Rosa. Optimization: questions, exercises and
applications, Prentice Hall - 2001 (in Spanish).

[8] Ismael Vaz, Robot trajectory planning with semi-infinite
programming, SIAM Journal on Optimization, vol. 9,no. 2,2001.

[9] Carrillo Esneider y Mora Gleimer. Outer Approximations
Algorithm for minimizing costs of Air Pollution Control Problem.
Bucaramanga, 2003, p.138-139. Autonomous University of
Bucaramanga. School of Systems Engineering.

[10]Fedossova A., Kafarov V., Mahecha Bohérquez D.P., Outer
Approximations Algorithm for the Air Pollution Control Problem.
Colombian Journal of Computation. Vol. 4 No. 2,2003.

[11]Chi, Mei-Hsiu, Linear semi-infinite and nondierentiable
programming methods for robot trajectory planning problems.
Ph.D. Thesis, lowa University, 1991.

[12]Medvedev, V.C.; Potemkin, V.G., Neural Network, MATLAB 6.0.
Dialog- MIFI, Moscow, 2002 (in Russian).

[13]Fedossova A., Santoyo J. Stochastic Algorithm for Search an
Optimal Trajectory of an Automatic Manipulator. Colombian
Journal of Computation. Vol. 8 No. 2, Bucaramanga, December
2007

71

