

Specifying Mobile Network using a wp-like Formal
Approach

Awadhesh Kumar Singh∗ Umesh Ghanekar†

Anup Kumar Bandyopadhyay‡

Abstract

The paper aims at providing a formal system, motivated by Dijkstra’s weakest precondition
logic, for specifying mobile network. The paper shows how mobility can be specified using a
state and transition based approach, which allows mobile hosts to be treated as nodes in a
traditional statically structured distributed system. Another goal is to reason formally about the
possible behaviors of a system consisting of mobile components. The handover procedure serves
as an illustration for the notation. The contribution of the paper is the development of a style of
modeling and reasoning about the temporal properties that allows for a straightforward and
thorough analysis of mobile systems.

Keywords: weakest precondition, mobile computing, specification, verification, safety,
handover.

1 Introduction
Formal methods are classically considered difficult and time consuming [1]. Despite the fact,
formal methods have witnessed a growing interest in the area of specification, development,
and verification of systems. They are increasingly used to increase confidence in the quality,
reliability and design of systems or part thereof [2]. Hall in his Seven Myths [3] asserted that
mathematics for specifications should be easy. Lamport [4] has stated that a specification for
the required system must not only be easy to write and understand, they should also be easy to
use for verifying the correctness. People find formal specifications difficult to read because of
the large use of the symbols [5]. The notational difficulties are more in writing specifications,
due to the need for great attention to detail and correct use of mathematical statements. The
formal approaches to the design of systems rely on reasoning about properties of the system
[6]. Thus specifications to support such an approach should provide enough scope for
reasoning about properties. Hesselink [7] regards Hoare triples [8] as the most adequate way
to specify the systems. He adds further, one can use Hoare logic to define derivability of
Hoare triples, but weakest preconditions form a more convenient semantic formalism that is
sufficiently close to Hoare triples. Moreover, in practice, program verification using the
inference rules of Hoare logic can be complicated, because intermediate assertions are needed
between the statements. Therefore, one uses verification rules based on weakest precondition

∗ Department of Computer Engineering, National Institute of Technology, Kurukshetra 136119, India
Email: aksinreck@rediffmail.com
† Department of Electronics and Communication Engineering, National Institute of Technology, Kurukshetra 136119 India,
Email: umesh_ghanekar@rediffmail.com
‡ Department of Electronics and Telecommunication Engineering, Jadavpur University, Kolkata 700032, India
Email: anupbandyopadhyay@hotmail.com

 1

mailto:anupbandyopadhyay@hotmail.com

[9, 10]. However, there may exist some situations when wp is not computable. Then we
provide some additional information in order to use wp in program verification.

Mobile computing has evolved as a new distributed computing paradigm in recent years.
It happened due to developments in both hardware and software technology of mobile
networks where physical devices migrate from one location to another [11]. Mobile systems
allow the user to access resources only via message passing, hence they are examples of
distributed system. The mobility poses new challenges [12] to the message passing
mechanism. Therefore, the formal methods, developed for specification and verification of
distributed systems, may not prove equally effective in formalizing mobile systems. The usual
approach to specify such systems is to devise a new language or logic. A new language or
logic means a new semantics, new proof rules, and new tools. It isn’t a very comforting
thought that, when faced with a new problem domain, one must redo everything [13].
Therefore, the proponents of formal methods either augment the existing ones to make them
applicable in the mobile scenario or suggest some anchored version of it. It is the case here.

We inherit useful intuition from the weakest precondition (wp) logic [14, 15, 16],
developed by Dijkstra, for two reasons. First, the wp-logic [14, 15, 16] is elegant and
conceptually simple because it uses first order predicate logic, which is very easy to apply
because its syntax and semantics are well defined. Secondly, through wp-logic one can derive
cause from effect, that is – precondition from post conditions. Therefore, it is much more
sound and preferable being goal oriented [17, 18]. However, in some cases when wp is not
computable, we work with a useful precondition (with respect to a post condition) that is not
the weakest precondition. For example, in case of loops, we use (i) an invariant that is true
before and after each iteration and upon termination and (ii) a bound function, to show that
the loop terminates and also, to give an upper bound on how many iterations can be executed
before termination occurs.

Dijkstra developed it originally for the specification of sequential systems. This paper
presents a formal approach, motivated by wp-logic, for specification of mobile network,
which is obviously an example of non-sequential system. Although the approach was
presented first, under the name Split Precondition Logic (SPL) in [19], to verify a distributed
mutual exclusion algorithm where processes communicate through shared variables in a
traditional statically structured environment. The question of mobility did not arise there.
Therefore, in the previous work, it remained unconcluded that the SPL can handle mobility.
The present article is to demonstrate the power of the SPL in respect of mobility. Hence, we
propose to extend the proof technology into the realm of mobile network, where processes
communicate through message passing and also the nodes may change their physical positions
while communicating. Therefore, the article is not simply, a case study or, about re-presenting
a known approach; it also aims to demonstrate that the SPL is suitable for both, modeling and
reasoning about the mobile systems. The present exposition is the result of a careful re-
evaluation of the implications of mobility on the SPL, a model originally intended for
statically structured distributed systems. Our hope is that the approach used here could be
applied fruitfully to the systems with a complexity similar to current communication
protocols. We use the term “approach” to avoid suggesting that we have a well-developed
methodology. However, the concepts presented here are not introduced casually. The
handover procedure has been chosen for the illustration. The handover protocol is the example
of an infinite state mobile system. Our approach could successfully handle it through the
abstractions of inter-process communication.

The remainder of the paper is organized as follows. In section 2, we give the basic
elements of the framework. Section 3 contains a brief overview of the handover protocol. In
section 4, we present the complete specification of the mobility in our framework. Section 5 is
a discussion about some important concepts related to our specification method. Section 6

 2

includes formal verification of the safety and liveness properties. Section 7 presents
concluding remarks.

2 The Split Precondition Logic (SPL)

Like every formal language, the split precondition logic also has a well-defined syntax and
semantics. The description of the mathematical model is being given in the following paragraphs.

A set P.X of states and a set P.R of state transition rules define a process P. On the similar
lines a set S.P of processes interacting through message transactions define a system S. The
expression in(P.x) represents that a process P is in state P.x. The initial state of process, which is
predefined, is denoted by the expression initial(P.x0). The collection of states of all the processes
belonging to set S.P is termed as state SX of the system S.

A state transition rule represents the movement of process from one state to other. In order to
fire any transition rule P.r and eventual establishment of post condition Q, there exists a
corresponding weakest precondition wp(P.r, Q). We postulate the value of wp for a specific post
condition Q and for a specific transition P.r. Though the name, weakest precondition, sounds
similar, but wp, in our case, is different with the wp used by Dijkstra [14, 15, 16]. He used it to
represent a predicate transformer, i.e., a function that maps any predicate (that expresses a required
post condition) to another predicate (that expresses the precondition for the statement to terminate
in a state that satisfies the post condition). The wp, in Dijkstra’s logic, is computed from the
program text, hence, it represents a precondition which is always weakest. Here, in split
precondition logic, unlike Dijkstra’s wp-logic, the weakest preconditions are not computed from
the program text, but rather they provide a new model of the program, which reflects the original
semantics of the program. Since it depends on atomicity considerations, therefore, it represents a
precondition that may not always be weakest, in true sense. However, whenever, the precondition
would be weakest, it would be similar to Dijkstra’s predicate transformer wp. If the system state
satisfies wp(P.r, Q) then execution of P.r will eventually establish the post condition Q. However,
this is not guaranteed unless wp(P.r, Q) is true before the execution of P.r. The ‘precondition’ is
‘weakest’ in this sense only. In our logic, weakest precondition has been splitted into two entities.
(i) wsp(P.r, Q), termed as weakest self precondition and is related to the process P itself.
(ii) wcr(P.r, Q), termed as weakest co-operation requirements and includes the co-operation
requirements from other processes.
Thus, the total weakest precondition will be given by
wp(P.r, Q) = wsp(P.r, Q) ∧ wcr(P.r, Q)
The above expression justifies the appropriateness of the name Split Precondition Logic.
Since, the co-operation requirements have already been included in the wp in our approach,
separate proof of co-operation, as required in [20], is not necessary here. Any transition rule
P.r is described jointly by weakest precondition wp(P.r, Q) and post condition Q. This scheme
is illustrated in the following example.

Example
A system S is described by the following informal specification.
(1) There are two processes P1 and P2 in S.
(2) A message transfer occurs from P1 to P2 when
(a) An input command with P1 as source is executed in P2.
(b) An output command with P2 as destination is executed in P1.
(3) A process must wait until the other process is ready for message transaction, in other words the
input and output command must be synchronized.

 3

2.1 Formal System Specification
2.1.1 States of process P1

 STATE SEMANTICS
 1. P1 . beo state of P1 before execution of the output command
 2. P1 . rts state of P1 when it is ready to send a message. This state occurs just after

the execution of the output command
 3. P1 . sent state of P1 describing the fact that the message transaction is over

2.1.2 States of process P2

 STATE SEMANTICS
 1. P2 . bei state of P2 before execution of the input command
 2. P2 . rtr state of P2 when it is ready to receive a message . This state occurs just

after the execution of the input command
 3. P2 . rec state of P2 describing the fact that the message transaction is over

With reference to above states we can represent the state transitions between both the processes by
following figure 1. The dashed line shows the co-operation required from the other process to
execute the specified transition rule. The same can be specified by the transition rules given below
the diagram.

2.1.3 Transition Rules
Process P1 ; identified by P1 ;
States : P1 . beo, P1 . rts, P1 . sent;
P1 . r1 : :
wsp(P1 . r1 , in(P1 . rts)) = in(P1 . beo)
wcr(P1 . r1 , in(P1 . rts)) = true
end of P1 . r1;
P1 . r2 : :
def b = in(P1 . sent) ∧ in(P2 . rec)
wsp(P1 . r2 , b) = in(P1 . rts)

wcr(P1 . r2 , b) = in(P2 . rtr)
end of P1 . r2;
end of transition rules;
Initial state : in(P1 . beo)
end of process P1.
Process P2 ; identified by P2 ;
States : P2 . bei, P2 . rtr, P2 . rec ;
P2 . r1 : :
wsp(P2 . r1 , in(P2 . rtr)) = in(P2 . bei)

P1.beo

P1.sent

P1.rts

P2.rec

P1.r2

P2.r2

P2.rtr

P2.r1P1.r1

P2.bei

Figure 1. The State Transition Diagram

 4

wcr(P2 . r1 , in(P2 . rtr)) = true
end of P2 . r1;
P2 . r2 : :
def b = in(P1 . sent) ∧ in(P2 . rec)
wsp(P2 . r2 , b) = in(P2 . rtr)

wcr(P2 . r2 , b) = in(P1 . rts)
end of P2 . r2;
end of transition rules.
Initial state : in(P2 . bei) ;
end of process P2.

The transition rule P1 . r2 causes state transitions for both the processes P1 and P2. Hence, a
corresponding transition rule, viz . , P2 . r2 is also defined in the process P2. Though message
transaction can occur between two processes only, we may have to include assertions about the
states of more than one processes in wcr(P . r , Q). This is necessary when P is allowed to accept a
message from Pi only when Pj has not invoked a send command. Implementation of such a system
is possible by using a control structure like pri-alt in occam.

2.2 Non-deterministic State Transition Rule
A non-deterministic state transition rule P.r may include number of different sub-rules each of
which requires a definite precondition to be satisfied for its execution. These preconditions will be
called guards. Execution of a sub-rule will change the state of P as well as the state of one of the
co-operating processes whose active co-operation is necessary for this execution. State transition
in the co-operating process will be achieved by simultaneous execution of a state transition rule. If
the preconditions for more than one sub-rule are satisfied then one of them is selected for
execution. Selection procedure is non-deterministic and therefore, it is necessary to pass this
information to the relevant co-operating process to produce the required state transition. The
weakest precondition for a non-deterministic transition rule P.r is obtained as follows.

Let there be n number of sub-rules denoted by P.ri : i = 1,…,n. On top of these sub-rules we
assume a selector procedure, denoted by select, which makes the required non-deterministic
selection .The post condition space for this procedure should therefore include a number of
boolean variables denoted by
si : i = 1,…,m . At each invocation the selector makes one such variable true. If a sub-rule P.ri has
a post condition Qi then

si ⇒ wp(P.ri, Qi)

Let Bi denotes the required guard for P.ri, then the truth of this condition should ensure the
selectability of si, i.e. ,
Bi ⇒wr(select, si)
Where, wr(select, si) is the weakest requirement that the procedure select may produce si. Using
equations for si and Bi the rule P.r is described as follows:
P.r ::
Q ≡ ∃ i : Qi ;
wp(P.r, Q) = (∃ k : Bk) ∧

(∀ i • Bi ⇒ wr(select, si)) ∧

(∀ j • sj ⇒ wp(P.rj, Qj)) ;
end of P.r;
There are following two reasons for using wr in addition to wp here. We have used wp to specify
the transition rules reflecting some state change(s) in the concerned process(es). The select
procedure, which has been specified through the weakest requirement wr, does not reflect any state
change. Rather, it reflects non-deterministic selection within a state transition rule. Secondly, it is a
finer-grained specification. It gives more convenience to the system implementer.

 5

2.3 The Property of a System
The operational model of a system can be specified by the state transition rules. These rules
can be specified completely by their weakest precondition, post condition pairs. However,
only operational specification may not be sufficient to specify the system requirements. In
order to specify a system completely, along with the state transition rules the system
properties must also be explicitly specified in a precise and implementation-independent
manner. Various models allow the specification of the system properties in the form of
invariants that should be preserved by all operations, pre- and post-conditions for operations
or other forms of constraints on the system’s behavior. Foe example, in our model, to specify
a system invariant that must remain true before and after the execution of each state transition
rule, there must exist a condition Q such that
∀ i • ∀ m •
{wp(Pi . rm , Qi , m) ⇒ Q} ∧
(Qi , m ⇒ Q)
Similarly for a guarded command we have
∀ i • (Bi ⇒ Q) ∧

(Bi ⇒ wp(P . ri , Qi)) ∧ (Qi ⇒ Q)

3 The Handover Protocol

Handover1 is an important integral process of a modern day cellular system. It is the
mechanism that transfers an ongoing call from one cell to another as a user moves through the
coverage area of a cellular system. The switching should be performed in a fraction of a
second and should be, generally, transparent to the two parties. In order to maintain the
continuity and the quality of a call in progress, properly designed handover procedures are
critical [21].

The decision to initiate the handover can be made by measuring several quantities such
as signal levels the mobile station (MS) receives from the base stations (BS’s), the distance
from the BS’s, and the bit error rate to estimate the quality levels of the concerned radio links.
Signal level measurement is one of the commonly used criteria, especially in microcells where
it could be the only reliable method available [22, 23].

A handover can be requested and/or forced by various points in the network. We can
mainly distinguish between Mobile Services Switching Center (MSC) initiated handover (a
network forced handover as a means of traffic load balancing) and mobile initiated/assisted
handover. The Mobile Assisted Handover Algorithm (MAHO) was proposed, initially, by
Agrawal and Holtzman [24]. The process is initiated only when the averaged signal strength
received from the currently active BS drops below a minimum threshold. This situation is
viewed as an indication that the mobile user is moving out of the initial cell into a neighboring
cell. This parameter is determined by the network operator depending on the coverage by that
particular BS. This parameter is a few dBs above a signal threshold for dropping. The
difference between these two thresholds gives the mobile a chance to search for another BS
before the call drops. The effective network is planned so that the mobile can find another BS
whose received signal strength is above the minimum handoff threshold and not just above the
threshold for dropping.

Once this need for a handover is detected, the mobile then scans the other BS
(neighboring cells) and then hands over to another BS only if the signal strength of that BS is

1 The terms “handover” and “handoff” are used interchangeably within the literature.

 6

maximum amongst the rest of the base stations and exceeds the current one by h dB. h is the
hysteresis level meant to avoid the repeated handoffs because of signal strength variations due
to shadow fading. In a real system, the mobile continuously tracks the signals received from
the neighboring base stations and sends the information to the BS. The BS keeps a track of
these signal strengths and maintains a priority list of all the BS’s according to the received
signal level and uses the list to choose which BS to try for a handover when one is required.
Similar to [25], the algorithm to decide whether to perform a handover or not is not specified
in the current proposition. It is considered to be operator dependent. This algorithm is not
investigated in our work, because our work starts when the decision has been made.

4 Specifying Mobility in the SPL

4.1 The Handover Procedure
Consider the following simplified handover procedure [26, 27, 28, 29] that involves all the
steps required in a complete process. Let us have one Mobile Station (MS) and two Base
Stations (BS), controlled by the same Mobile Switching Center (MSC). Each BS possesses
one radio channel for communication with the MS. Each BS is linked to the MSC through a
fixed channel, Assume the transfer of user data in one direction only from the MSC to the MS.
Suppose that the MS is currently in the range of the first BS, as shown in Figure 2. We say
that the BS is currently active, and that the other one is passive.

Assume that the MSC consists of two parts, a Communication Controller (CC) and a

Handover Controller (HC). The CC performs all communications over the fixed channels. The
HC stores all unused radio channels (in our case just one) and may at any time tell the CC to
initiate a handover. Let us take that it does it by transmitting on a private link the identity of
the channel into which the handover should be made. In reality, the HC would be quite
complex, containing many unused channels for many BS’s, and it would be equipped to
determine when and to which BS a handover should be made. Normally, the CC receives user
data from the fixed network and sends them to the active BS. The BS sends them via the radio
channel to the MS, which gives them to the user. The HC may eventually find out that the

HC

out

MS

iBS

im

îBS

îm

îfif

CC MSCl

inp

Figure 2. Initial Topology

 7

handover in needed. It then changes its state from idle (idle) to need handover (need_ho). It
then sends the information about the new radio channel, which should be used by the MS, to
the CC via the private link. In this case, the CC sends a handover command (ho_cmd)
message containing the information about the new channel to the active BS, which sends it to
the MS via the old radio channel. Upon receipt of the handover command message at the MS,
there are two possibilities as follows.
 Ideally, the MS disconnects the old radio channel and establishes a connection with
the new, currently passive BS by sending a handover access (ho_acc) message via the new
radio channel to it, and continues the normal communication via the new BS. Upon receipt of
the ho_acc message, the passive BS sends a handover complete (ho_com) message via the
fixed link to the MSC and proceeds as active BS.
 The other possibility is that the MS fails to establish a connection on the new radio
channel and succeeds to reestablish the connection on the old channel. In this case, it sends a
handover failure (ho_fail) message to the MSC via the old channel and BS, and resumes
communication on the old channel as if no handover attempt had been made. After forwarding
the ho_cmd to the MS, the active BS waits for response from either the MSC or MS. If it
receives the ho_fail message, it forwards into the MSC via the fixed link and proceeds as
active BS.
 If the handover has succeeded, the other BS has become active and the MSC has been
informed about it by ho_com. Upon receipt of the ho_com, the CC requests the information
about now unused radio channel from the so far active BS with a release channel (relch)
message. After its receipt, the BS sends the information to the CC and gets passive. When the
CC receives the information, it forwards it through the private link to the HC, and, as it must
have stopped to receive user data when the handover had started, it now resumes the normal
operation in the mobile network with changed topology.
 If the handover has failed, the CC gets the ho_fail from the MS via the old BS, and
sends the information about the same radio channel, into which the handover should have
been performed, back to HC. It then resumes the normal operation.
 Whenever the HC requires a handover, it then waits for the CC to send it the
information about which radio channel is not in use after the handover attempt. We have just
told about when the CC sends it. Upon obtaining the information, it may require a handover
into the unused radio channel.
 Similar to [26, 27, 28, 29], the communication between the components of the procedure
is assumed synchronous, that is, a process may send a message to another one only if it is ready to
receive it. The sending and the receiving actions are then executed simultaneously and both
processes pass to a new state. It is important to introduce synchronous communication, otherwise a
deadlock could occur.

4.2 Handover in the SPL
4.2.1 Specification of Mobility
Now, we formalize the above-described handover procedure using split precondition logic.
The SPL specifies the complete configuration of the system in terms of its components and its
interactions. Also, any interaction between components is made explicit. Similar to other
specification techniques, we also make certain assumptions, which provide framework for
analysis of the procedure. Several CPUs may be present but memory hardware prevents
simultaneous access to the same memory location. We also make no assumption about order
of interleaved execution. Thus, we would be able to use assertional approach that is more
convenient for formal verification [30]. Although we talk about a model of concurrency, we
are actually modeling concurrency by a non-deterministic interleaving of atomic operations
from the various processes. With an appropriate choice of atomic operations, almost any

 8

concurrent system can be accurately modeled this way, in the sense that any safety or liveness
properties proved about the model will be true of the system [31]. For instance, we can allow
processes that share variables, or forbid it and request that processes send and receive
messages instead. In both cases, the nature of composition is similar, that is, fair interleaving
of atomic transitions [32].

The handover protocol, being an example of a network of processes that communicate by
exchanging messages, can be modeled by using a shared variable to represent the
communication channel between transmitting and receiving processes [26, 27, 28, 29]. With
this structure it is easy to model a variety of assumptions about message transmission – for
example, that the process delivers all messages safely or that it may non-deterministically lose
or modify some of them. However, the similar approach has been used by Minsky et al. in
[33] where a pair of agents, in heterogeneous distributed system, interact via tuple space to
exchange messages between them and also by authors of [34] where mobile agents
communicate with each other by communication space that is an implementation of tuple
space. The tuple space is a logically shared memory because it provides the appearance of a
shared memory but does not require an underlying physical shared memory.

The non-deterministic interleaving in our model of concurrency means that we make no
assumption about the relative speeds of the processes and each process executes at non-zero
speed. However, fairness implies that no processor is infinitely faster than another. This
requirement is met, for example, by an implementation that provides a separate processor to
execute each active process and fair scheduling of concurrent accesses to shared variables
[31]. Therefore, we can formalize the handover procedure as a state transition system,
consisting of following processes and their state transition rules, which will be able to
include, and therefore manifest, all those execution sequences that could occur when the
procedure is executed fairly.

It is assumed that the actions of different processes execute interleaved. We write the
specification of the simplified handover procedure as composition of
processes , and ˆ, , ,i iCC HC BS BS MS , representing both controllers, both Base Stations, and
Mobile Station from the informal description, respectively. A channel (the ‘frequency”) for
communication between two processes will be represented by a shared variable that can store
only one message or have an ‘empty’ value. A process may write to a shared variable only if
the variable is empty. The sending of a message will be represented by writing it to the
variable with the ‘empty’ value. The receiving a message will be represented by reading the
value of the variable when it is nonempty. Hence, the list of the shared variables is as follows.
inp – represents data input channel of the procedure
l – represents fixed channel for communication between and CC HC

if – represents fixed channel for communication between and CC iBS

îf – represents fixed channel for communication between and CC îBS

im – represents fixed channel for communication between MS and iBS

îm – represents fixed channel for communication between MS and îBS
out – represents fixed channel for delivering data to the user
We introduce two additional components, environment (that produces user data on in and a

user that consumes the data on . The channel names subscripted i and represent the
currently chosen channel and the unused channel to switch into through handover, respectively.
Similarly, the BS names subscripted i and represent the currently active BS and the passive BS
that becomes active after the successful handover, respectively.

)E p

()U out î

î

 9

4.2.2 States of the Process E
 STATE SEMANTICS
1. . iE active Process is active in channel i E
2. .E passive Process is passive E

4.2.3 States of the Process P

 ˆ ˆ({ , , , , , } and { , , , , , ,)i ii iP HC CC BS BS MS U c inp l f f m m out∈ ∈ ˆi i

c

 STATE SEMANTICS
1. .P idle Process is idle P
2. . _P need ho Process has found out that the handover is needed P
3. . _P ho cmd Process has handover command massage P
4. . _P ho acc Process has handover access message P
5. . _P ho com Process has handover complete message P
6. . _P ho fail Process has handover failure message P
7. . _P relch c Process has release channel c message P
8. . _P free c Process has free channel c message P
9. .put _P c Process has delivered message on channel c P
10. .P rtr Process is ready to receive message P
11. .get _P c Process has received message from channel c P
12. .empty _P Process has removed message from channel c P

The state transition rules are specified in appendix 1.

5 Discussion on the Approach

The basic approach is well introduced in the above section, but the formal details tend to
obscure some important concepts. In this section, we attempt to explain these concepts
without repeating the details of the underlying approach.
 One may state that it must be possible for communication channel to lose messages.
However, the specification does not require that the loss of messages be possible, since this
would prohibit an implementation that guaranteed no messages were lost. The specification
might require that some state transition may or may not occur despite the loss of messages. It
does not require that all messages be delivered. Therefore, it need not be part of the actual
specification [35].
 In our approach, the behavior of a concurrent system has been specified as a sequence
of transitions. One may interpret this situation as ‘loss of concurrency’. However, this is not
true. Generally, the temporal ordering among the discrete atomic transitions, describing the
behavior of a system, is assumed a partial order. However, a partial order is equivalent to the
set of all total orders that are consistent with it. Therefore, the extension, of partial order to a
total order, converts the behavior of a system to be a sequence of state transitions. Moreover,
there is no loss of information, since we are concerned with only safety and liveness
properties. Therefore, concurrency remains in the form of non-determinism, that is, any two
concurrent transitions are performed in either order.

From specifications, one should not be able to tell whether an operation is initiated by
some software (subroutine call) or hardware action (raising a voltage on a wire). It must be
specified in terms of implementation level concepts like subroutine names and voltages. The
PUT-GET combination, used for communication between two processes through fixed

 10

channel (that is shared variable), may be looked by someone as implementation level
specification and it must be completely specified at the implementation level. Therefore, one
may object that specifications are not implementation-independent. We agree that the
implementer should have complete freedom in implementing the objects and operations that
describe the internal behavior. Therefore, one must try to make specifications compact, by
specifying in terms of the internal behavior that can be described with high-level concepts.
Guttag and Horning [36] recognized the need of presence of two partitions in a specification,
implementation-independent and implementation-dependent. If a process is executing PUT
operation on the channel, the other process, which is trying to execute GET operation, on the
same channel, should wait until the value is placed on the channel, otherwise it may get the
null value. It is other way also. The process trying to execute PUT operation on the channel
should wait until the other process has emptied the channel. Waiting is an implementation
level concept that cannot be expressed in a general way, therefore, it is necessary, in the
specification, to specify PUT and GET as atomic operations [37]. Also it does not mean that
the entire PUT and GET operations have to be implemented as single atomic operation. It
does mean that when the PUT operation is putting information on the channel, there must be
some instant at which that information becomes visible to the process executing GET
operation, and similarly some instant at which the GET operation finishes reading the
information from the channel. If there is not such an instant, then the process executing the
GET operation may obtain only a part of the information, since execution of the PUT
operation is yet to finish [4]. Hence, the freedom of implementation is not restricted.

6 Verification of the Handover Protocol

The handover procedure is correct if it satisfies the following properties.
Safety
S1: Each data item submitted from the environment (E) must be delivered to the user (U) only
once.
S2: There must exist linear precedence relation (represented as di < dj) between the data items
– that is, if the data item di has been produced, from E at inp, earlier than the data item dj, then
the relation must hold while delivering them to U.
Liveness
L1: Each data item, produced from E to the network, will eventually be delivered to U.
L2: E must produce data on inp infinitely often.

6.1 Proof
The handover procedure is a data-independent system – that is, data are not manipulated.
Hence, the execution of no transition rule is dependent on their values. The data is only
written to and read from some variables. Therefore, if it can be proved that the handover
procedure works as perfect buffer; it will suffice for the verification of properties [27, 38, 39].
It has been assumed that the communication is synchronous; hence it would be sufficient to
prove safety properties with just two different data and liveness properties with just one
datum [39].

6.1.1 Proof of Safety
S1: Assume the datum d is transmitted from BSi to MS. In the SPL, this condition would be
specified as follows.

(.) (.put_) (.get_) (.empty_i i i iin MS rtr in BS m in MS m in BS f∧ ⊃ ∧)i (1)

 11

In our approach fi and mi are shared variables, being communication channels. Therefore,
RHS, of the equation 1, would imply following assignment to shared variables.
RHS ⊃ mi := d ∧ fi := 0 (2)
The communication between the components of the procedure has been assumed synchronous;
it is obvious from the equation 2 that both actions, the writing of the datum d on the variable
mi and its removal from the variable fi, happened together. Thus, the datum d, having been
removed from its immediate source fi, can never be assigned again to its immediate
destination mi. This is analogous to ideal ‘cut’ and ‘paste’ mechanism. Hence the process BSi,
after transmitting the datum d to the receiver process MS, removes the datum d from fi, the
channel that had supplied the datum d to it. Therefore, the BSi behaves as buffer between CC
and MS. Since, the BSi – MS pair was arbitrarily chosen, similar will be the case with any pair
of processes connected through a direct channel; subsequently, no process will receive any
datum more than once. Thus, the user would receive no datum, produced by the environment
at the network, more than once.

S2: Let us assume the contrary. The linear precedence relation di < dj, between the data items,
produced from E at inp, di and dj, has been violated while delivering them to U. The data item
dj, produced later from E at inp, has overtaken the data item di, produced earlier from E at inp.
In order to satisfy this condition, the datum di and dj must have been, at least once, at the same
point. There are only two possibilities.

S2

1: The datum di and dj must have been, at least once, at the same node, say BSi. In the SPL,
being data independent approach, the transmission and reception, at BSi, can be specified as
following transitions.

(.) (.put_) (.get_) (.empty_)i i i iin BS rtr in CC f in BS f in CC inp∧ ⊃ ∧ (3)
(.get_) (.empty_) (.put_) (.)i i i i iin BS f in MS m in BS m in MS rtr∧ ⊃ ∧ (4)

In order to achieve a system state in which the datum di and dj are at BSi, there must exist
transition A, which contains , as one of the process states, in its precondition and
post condition both. The SPL specification of such transition will be as follows.

(.get_iin BS f)i

)i

)i

∧

(, (.get_)) (.get_)i i i iA wp A in BS f in BS f∃ • ∧ = ∧ (5)
Looking at the equation 3 and 4, we observe that no such transition exists. However, there
may be another way to have such transition. There may exist two concurrent transitions A1
and A2; A1 may contain , as one of the process states, in its post condition and A(.get_iin BS f 2

may contain , as one of the process states, in its precondition or vice versa.
Using the equation 3, 4, and 5, the SPL specification will be as follows.

(.get_iin BS f

1 1(, (.get_)) (.)i i iA wp A in BS f in BS rtr∃ • ∧ = ∧ (6)

2 2(, (.put_)) (.get_)i i i iA wp A in BS m in BS f∃ • ∧ = ∧ (7)
The required weakest precondition, for concurrent execution of transitions A1 and A2, will be
the following conjunction of weakest preconditions specified in the equation 6 and 7.

(.) (.get_)i i iin BS rtr in BS f∧ (8)
The process BSi cannot be in two states together. Therefore, the equation 8 specifies an
infeasible system state and will be reduced to false. The datum di, dj, and the node BSi were
arbitrarily chosen. Thus, no two data items can be together at any node.
S2

2: The datum di and dj must have been, at least once, at the same channel. This is also an
impossible system state. Since every channel is a shared variable, no variable can assume two
values, di and dj, together. As the datum di and dj were arbitrarily chosen, no two data items
could be together at any channel.

 12

6.1.2 Proof of Liveness
L1: L1 will be true always, if an input transition with a datum occurs on inp, then an output
transition with the datum eventually occurs on out [27, 39]. In our approach, the non-
deterministic transitions have been specified by rules with mutually exclusive guards; hence,
their fairness condition is already satisfied. Therefore, if the weakest precondition of a rule is
satisfied, then the rule would be executed “sometime”. Let INIT be the predicate that
represents the proper initial state – that is, E is active to produce data at the inp and the inp is
empty.

(.) (.empty _)iINIT in E active in CC inp= ∧ (9)
The INIT specifies the weakest precondition of a transition rule. Therefore, we can write
following expression.

(.put _) (.)INIT in E inp in CC rtr⊃ ∧ (10)
The equation 10 represents weakest precondition of a transition rule, which would be fired
“sometime” establishing its post condition. Similarly, looking at the other transition rules, we
observe that the post condition of every transition rule contains the precondition of a
transition rule, which would subsequently be fired. Therefore, we can represent this fact as
following expression.

.......... (.get _)INIT in U out⊃ ⊃ (11)
The equation 11 is a predicate logic expression. It can be expressed as following temporal
logic expression. The operators ⊃, □, →, and ⇝ have their usual meanings “implication”,
“always”, “eventually”, and “leads to” respectively. The dual ◊ to the operator □ is defined
by
◊A ≡ ¬□ ¬A. Since □ ¬A asserts that A will never become true, we can read ◊ as “not
never”.

(.get _)INIT in U out⊃→ (12)
Now, we would use the following temporal logic equalities given in [40–46].
A ⊃→ B ≡ A ⇝ B and A ⇝ B ≡ □ (A ⇒ ◊ B)
The equation 12 can be expressed as follows.
INIT ⇝ (13) (.get _))in U out
□ (INIT ⇒ ◊ (((14) .get _))in U out
The equation 14 specifies that for any time at which a datum is produced at the network, the
user then or at some later time would receive it.
L2: L2 will be true if an input transition with the datum infinitely often occurs on inp [27, 39].
It can be false only when (i) there is single user in the network or (ii) if there is more than one
user then no user wants to talk; which are never the case. In all other situations E would be
ready to execute input transition, on inp, again and again. Hence, infinitely often datum would
be produced on the inp. This is the reason behind our assumption, in the beginning, about the
presence of an active process E that is ready to produce datum at the network. It suffices for
the proof of the property L2.

6.1.3 The Scope for designing Proof Assistant
Although the strength of our modeling approach is simplicity, accuracy has not been
compromised for the sake of simplicity. Nevertheless, our approach needs careful human
effort. However, in our logic, the correctness is ensured by proving assertions, which are
formulas in the predicate logic. These formulas must be embedded into the system during its
design phase. Dijkstra [14] also mentioned this in connection with the loop invariants. The
proof of these formulas requires standard predicate logic rules and also the transition rules of

 13

the system in question. Since we propose to specify a system by its transition rules, this
formalization is available to us. Therefore, it should be possible to develop a rule-based
system to evaluate the correctness of the assertions. One can also think of a proof system that
may be intelligent enough to consult with the user and update its rule base. However, in order
to limit the present exposition, we did not try that.

7 Conclusion

In the split precondition approach one specifies the protocol by describing a set of states and
all transitions between the states that are allowed to occur. One of the advantages of the
approach is that specifications can be written in friendly, familiar notations such as state-
transition diagrams. The style of specification appears to be classical; the assigned meaning is
new. The co-operation requirements have already been included, in the wp, in our approach.
Hence, the separate proof of co-operation, as required in [20], is not necessary here.
Therefore, our proof is simple and preferable being conceptually straightforward [47].

The handover protocol is an infinite state mobile system. In spite of this, our approach
could translate it into the finite state non-mobile abstractions of inter-process communication.
In order to be able to verify safety and liveness properties we introduced two additional
processes, environment (E) that produces data on the inp and a user (U) that consumes the
data on the out. The protocol has been specified as a composition of processes. The goal of
the work was to examine the suitability of the approach, which is a variant of wp-logic, for
specifying mobility using state based, shared variable concept. The idea of using shared
variable to specify communication channel between two processes is similar to [27] where
authors have specified non-deterministic action by several rules with the same guard and all
rules of the system have been assumed to be weakly fair. However, in our approach such type
of assumption is not needed, because the non-deterministic actions have been specified by
several rules with mutually exclusive guards.

Rather than giving an abstract discussion about the approach, we have chosen to
manifest its strength through specification and verification of the simple handover protocol
involving all the steps required in a complete process, because some times good examples are
more instructive than formal theories. The next step could be the discussion, in more
generality, on specification and verification of more realistic ones. We believe that the
semantic and syntactic constructs of the SPL have sufficient expressive power to model
modern-age complex communication protocols. Moreover, the SPL uses logical reasoning,
which is still the only way to prove correctness in the case of larger systems [48].

References

[1] R. M. B. E. Morsi and J. F. Leathrum. A formal specification and verification of GSM

using the OSI-RM formal object model. In Proceedings of the Applied
Telecommunication Symposium ATS’03, 30 March – 03 April, Orlando, Florida, pages 1–
6, 2003.

[2] L. Andriantsiferana, B. Ghribi and L. Logrippo. Prototyping and formal requirement
validation of GPRS: a mobile data packet radio service for GSM. In Dependable
Computing for Critical Application: Proceedings of the IEEE Conference, 6–8 January,
pages 109–128, 1999.

[3] J. A. Hall, Seven myths of formal methods. IEEE Software, vol. 7, September, pages 11-
19, 1990.

 14

[4] L. Lamport, Specifying concurrent program modules. ACM Transactions on
Programming Languages and Systems, 5(2): 190–222, 1983.

[5] K. Finney, Mathematical notation in formal specification – too difficult for the masses?’.
IEEE Transactions on Software Engineering, 22(2): 158-159, 1996.

[6] G. J. Doherty, J. F. Campos and M. D. Harrison, Representational reasoning and
verification. Formal Aspects of Computing, 12(4): 260-277, 2000.

[7] W. H. Hesselink, Predicate transformers for recursive procedures with local variables.
Formal Aspects of Computing, 11(6): 616-636, 1999.

[8] Z. Chaochen, C. A. R. Hoare and A. P. Raven, A calculus of durations. Information
Processing Letters, 40(5): 269-276, 1991.

[9] M. Kirchner. Program verification with the mathematical soft-ware system Theorema.
PhD thesis, Research Institute of Symbolic Computation, Linz, Austria, 1999.

[10] K. L. Ildiko. Program verification using Hoare logic. In Computer Aided Verification of
Information Systems – A Practical Industry Oriented Approach: Proceedings of the
Workshop CAVIS’03, 12th of February, e-Austria Institute, Timisoara, Romania, 2003.

[11] G. Smith. A formal framework for modeling and analyzing mobile systems. In
Australasian Computer Science: Proceedings of the 27th ACM International Conference
ACSC 2004, 26: 193–202, 2004.

[12] T. Imielinski and B. R. Badrinath, Mobile wireless computing: challenges in data
management. Communications of the ACM, 37(10): 18–28, 1994.

[13] L. Lamport. Verification and specification of concurrent programs. In: J. W. de Bakker,
W. –P. de Roever and G. Rozenberg (eds.), A Decade of Concurrency – Reflections and
Perspectives: Proceedings of the REX Workshop, June, The Netherlands, Springer-
Verlag, LNCS 803, pages 347–374, 1993.

[14] E. W. Dijkstra. A Discipline of Programming. Prentice Hall, Englewood Cliffs, NJ, 1976.
[15] N. Popov. Verification using weakest precondition strategy. In Computer Aided

Verification of Information Systems – A Practical Industry Oriented Approach:
Proceedings of the Workshop CAVIS’03, 12th of February, e-Austria Institute, Timisoara,
Romania, 2003.

[16] K. R. M. Leino. Efficient weakest preconditions. Technical Report MSR-TR-2004-34,
April, Microsoft Research, 2004.

[17] M. Ben-Ari. Mathematical Logic for Computer Science. Prentice Hall, Englewood Cliffs,
NJ, 1993.

[18] E. D’Hondt and P. Panangaden. Quantum weakest preconditions. In Quantum
Programming Languages: Proceedings of the 2nd International Workshop QPL2004, 12–
13 July, Turku, Finland, pages 75–90, 2004.

[19] A. K. Singh and A. K. Bandyopadhyay, Verifying mutual exclusion and liveness
properties with split preconditions. Journal of Computer Science and Technology, To
appear, 2004.

[20] K. M. Chandi and B. A. Sanders, Predicate transformers for reasoning about concurrent
computation. Science of Computer Programming, 24(2): 129–148, 1995.

[21] G. P. Pollini, Trends in handover design. IEEE Communications Magazine, March, pages
82–90, 1996.

[22] R. Vijayan and J. M. Holtzman, A model for analyzing handoff algorithms. IEEE
Transactions on Vehicular Technology, 42(3): 351–356, 1993.

[23] F. Graziosi, M. Pratesi, M. Ruggieri and F. Santucci, A multi-cell model of handover
initiation in mobile cellular networks. IEEE Transactions on Vehicular Technology,
48(3): 802–814, 1999.

[24] S. Agarwal and J. M. Holtzman, Modelling and analysis of handoff algorithms in multi-
cellular systems. In Proceedings of the IEEE Vehicular Technology Conference, pages
300–304, 1997.

 15

[25] A. Aaroud, S. E. Labhalla and B. Bounabat. Design of GSM handover using MARDS
model. In Information Technology and Applications: Proceedings of the 2nd International
Conference ICITA2004, 9–11 January, Harbin, China, 2004.

[26] F. Orava and J. Parrow, An algebraic verification of a mobile network. Formal Aspects of
Computing, 4(6): 497–543, 1992.

[27] T. Kapus and Z. Brezocnik. Verification of a mobile network in a shared-variables model.
Presented at the Verifications in New Orientations’97 Workshop, May, Val Bregaglia,
Switzerland, 1997.

[28] T. Kapus and Z. Brezocnik. TLA-style specification of a mobile network. In Proceedings
of the 23rd EURUMICRO IEEE Conference EUROMICRO’97, 1–4 September, pages
440–447, 1997.

[29] T. Kapus and Z. Brezocnik. Verification of a mobile network handover procedure using
Murφ. In Proceedings of the 6th Electro technical and Computer Science Conference
ERK’97, Z. A. J. C. Baldomir (ed.), 25–27 September, Portoro~, Slovenia, pages A/83–
86, 1997.

[30] W. H. Hesselink, An assertional criterion for atomicity. Acta Informatica, 38(5): 343–
366, 2002.

[31] L. Lamport, Proving liveness properties of concurrent programs. ACM Transactions on
Programming Languages and Systems, 4(3): 155–495, 1982.

[32] M. Charpentier. An approach to composition motivated by wp. In Fundamental
Approaches to Software Engineering: Proceedings of the 5th International Conference
FASE’2002, April, Springer-Verlag, LNCS 2306, pages 1–14, 2002.

[33] N. H. Minsky, Y. M. Minsky and V. Ungureanu. Making tuple spaces safe for
heterogeneous distributed systems. In Applied Computing – Special Track on
Coordination Models, Languages and Applications: Proceedings of the ACM Symposium
ACMSAC’2000, 19–21 April, Como, Italy, pages 218–226, 2000.

[34] L. Chunlin and L. Layuan. An agent-based approach for grid computing. In Parallel and
Distributed Computing Applications and Technologies: Proceedings of the 4th
International Conference PDCAT’2003, 27–29 August, pages 608–611, 2003.

[35] L. Lamport, A simple approach to specifying concurrent systems. Communications of the
ACM, 32(1): 32–45, 1989.

[36] J. V. Guttag and J. J. Horning. Formal specification as a design tool. In Principles of
Programming Languages: Proceedings of the ACM Symposium, January, Las Vegas,
pages 251–261, 1980.

[37] L. Lamport. What it means for a concurrent program to specify a specification: why no
one has specified priority. In Principles of Programming Languages: Proceedings of the
12th ACM SIGACT-SIGPLAN Symposium, January, New Orleans, pages 78–83, 1985.

[38] K. Sabnani, An algorithmic technique for protocol verification. IEEE Transaction on
Communication, 36(8): 924–931, 1988.

[39] P. Wolper. Specifying interesting properties of programs in prepositional temporal logic.
In Principles of Programming Languages: Proceedings of the 13th ACM Symposium,
pages 184–193, 1986.

[40] L. Lamport. “Sometime” is sometimes “not never”: On the temporal logic of programs. In
Principles of Programming Languages: Proceedings of the 7th Annual ACM Symposium,
28–30 January, Las Vegas, pages 174–185, 1980.

[41] E. A. Emerson. Temporal and modal logic. In: J. v. Leeuwen (ed.), Handbook of
Theoretical Computer Science, vol. B, chapter 16, Elsevier Science, pages 995–1072,
1990.

[42] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems:
Specification. Springer–Verlag, New York, 1992.

 16

[43] Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems: Safety. Springer-
Verlag, New York, 1995.

[44] E. M. Clarke, O. Grumberg and D. A. Peled. Model Checking. MIT Press, 1999.
[45] B. Bérard et al. Systems and Soft-ware Verification: Model-Checking Techniques and

Tools. Springer–Verlag, New York, 2001.
[46] F. Laroussinie, N. Markey and P. Schnoebelen. Temporal logic with forgettable past. In

Logic in Computer Science: Proceedings of the 17 Annual IEEE Symposium LICS'2002,
22–25 July

th

, Copenhagen, Denmark, pages 383–392, 2002.
[47] W. H. Hesselink, An assertional proof for a construction of an atomic variable. Formal

Aspects of Computing, 16(4): 343–366, 2004.
[48] H. Dierks, Comparing model checking and logical reasoning for real-time systems.

Formal Aspects of Computing, 16(2): 104–120, 2004.

APPENDIX 1

Transition Rules
The transition rules have not been categorized, under the name of the processes, as in the section
2.1.3. They have been shown interleaved for better understanding of the process of execution.
However, the names of the transition rules bear their process names hence it can be easily identified
to which process a particular transition rule belongs. The processes have more than one transition
rules; therefore, the transition rules have been numbered also.
% Start of the communication %

;1. of end
).(),1.(

)empty_.(),1.(
)_put.().(

::1.

rCC
activeEinQrCCwcr

inpCCinQrCCwsp
inpEinrtrCCinQ

rCC

i=
=
∧=

. 2 ::
(.get _) (.

(. 2,) (.)
(. 2,) (.put _)

end of . 2;

i

CC r
Q in CC inp in E active
wsp CC r Q in CC rtr
wcr CC r Q in E inp

CC r

= ∧

=
=

)

)

)i

;1. of end
)get_.(),1.(

)empty_.(),1.(
)_put.().(

::1.

rBS
inpCCinQrBSwcr

fBSinQrBSwsp
fCCinrtrBSinQ

rBS

ii

ii

=
=
∧=

. 2 ::
(.get _) (.empty _

(. 2,) (.)
(. 2,) (.put _)

end of . 2;

i i

i

i

BS r
Q in BS f in CC inp
wsp BS r Q in BS rtr
wcr BS r Q in CC f

BS r

= ∧

=
=

;1. of end
)get_.(),1.(

)_empty.(),1.(
)_put.().(

::1.

rMS
fBSinQrMSwcr

mMSinQrMSwsp
mBSinrtrMSinQ

rMS

ii

i

ii

=
=
∧=

. 2 ::
(.get _) (.empty _

(. 2,) (.)
(. 2,) (.put_)

end of . 2;

i i

i i

MS r
Q in MS m in BS f
wsp MS r Q in MS rtr
wcr MS r Q in BS m

MS r

= ∧

=
=

;1. of end
)_get.(),1.(
)empty_.(),1.(
)_put.().(

::1.

rU
mMSinQrUwcr
outUinQrUwsp
outMSinrtrUinQ

rU

i=
=
∧=

. 2 ::
(.get _) (.empty _)

(. 2,) (.)
(. 2,) (.put_)

end of . 2;

i

U r
Q in U out in MS m
wsp U r Q in U rtr
wcr U r Q in MS out

U r

= ∧

=
=

 17

. 3 ::
(. 3, (.empty_)) (.get_)
(. 3, (.empty_))

end of . 3;

U r
wsp U r in U out in U out
wcr U r in U out true

U r

=
=

% Start of the handover %

;1. of end
))_.(,1.(

).())_.(,1.(
::1.

rHC
truehoneedHCinrHCwcr

idleHCinhoneedHCinrHCwsp
rHC

=
=

. 2 ::
(. _) (.)

(. 2,) (. _)
(. 2,) (.)

end of . 2;

i

i

HC r
Q in HC ho cmd in E passive
wsp HC r Q in HC need ho
wcr HC r Q in E active

HC r

= ∧

=
=

. 3 ::
(.) (.put _)

(. 3,) (.empty_)
(. 3,) (. _)

end of . 3;

CC r
Q in CC rtr in HC l
wsp CC r Q in CC l
wcr CC r Q in HC ho cmd

CC r

= ∧
=
=

. 4 ::
(. _) (.empty _

(. 4,) (.)
(. 4,) (.put _)

end of . 4;

CC r
Q in CC ho cmd in HC l
wsp CC r Q in CC rtr
wcr CC r Q in HC l

CC r

= ∧
=
=

. 3 ::
(.) (.put _)

(. 3,) (.empty _)
(. 3,) (. _)

end of . 3;

i i

i i

BS r
Q in BS rtr in CC f
wsp BS r Q in BS f
wcr BS r Q in CC ho cmd

BS r

= ∧

=
=

)

)

)

)

)

)

. 4 ::
(. _) (.empty _

(. 4,) (.)
(. 4,) (.put _)

end of . 4;

i

i

i

BS r
Q in BS ho cmd in CC l
wsp BS r Q in BS rtr
wcr BS r Q in CC f

BS r

= ∧

=
=

. 3 ::
(. _) (.empty _

(. 3,) (.empty _)
(. 3,) (. _)

end of . 3;

i i

i

i

MS r
Q in MS ho cmd in BS f
wsp MS r Q in MS m
wcr MS r Q in BS ho cmd

MS r

= ∧

=
=

ˆ ˆ1

2

1 2

ˆ1

2

ˆ

1 1

1

. 4 ::
(.put _) (.)
(.put _) (.)

(. _) (.)
(. _)
(.empty _) (.

(. 4,) ()
((, (.

i i

i i

i

i i i

MS r
Q in MS m in BS active
Q in MS m in BS rtr
R Q Q
B in MS ho cmd in BS passive
B in MS ho cmd

in BS f in BS passive
wp MS r R B B
B wr select in MS r

= ∧

= ∧
= ∨
= ∧

=
∧ ∧¬

= ∨ ∧
⇒ 1

2 2
1

1 1
2

2 2

4.)))
((, (. 4.)))

((. 4.) (. 4 ,)))

((. 4.) (. 4 ,)))
end of . 4;

s
B wr select in MS r s

in MS r s wp MS r Q

in MS r s wp MS r Q
MS r

∧
⇒ ∧

⇒ ∧

⇒

ˆ ˆ1

2

1 2

ˆ ˆ1

2

1 1

1 1

2

. 5 ::
(. _) (.empty _)
(. _) (.empty _

(.) (.put _)
(.) (.put _)

(. 5,) ()
((, (. 5.)))
((

i i

i i

i i

i i

BS r
Q in BS ho acc in MS m
Q in BS ho fail in MS m
R Q Q
B in BS active in MS m
B in BS rtr in MS m
wp BS r R B B
B wr select in BS r s
B wr

= ∧

= ∧
= ∨
= ∧

= ∧
= ∨ ∧

⇒ ∧
⇒ 2

1
1 1

2
2 2

, (. 5.)))

((. 5.) (. 5 ,)))

((. 5.) (. 5 ,)))
end of . 5;

select in BS r s

in BS r s wp BS r Q

in BS r s wp BS r Q
BS r

∧

⇒ ∧

⇒

ˆ ˆ1

2

1 2

ˆ ˆ1

2

1 1

1 1

2

. 5 ::
(.) (.put _)
(.) (.put _)

(.empty _) (. _)
(.empty _) (. _

(. 5,) ()
((, (. 5.)))
((

i i

i i

i i

i i

CC r
Q in CC rtr in BS f
Q in CC rtr in BS f
R Q Q
B in CC f in BS ho acc
B in CC f in BS ho fail
wp CC r R B B
B wr select in CC r s
B wr sel

= ∧

= ∧
= ∨
= ∧

= ∧
= ∨ ∧

⇒ ∧
⇒ 2

1
1 1

2
2 2

, (. 5.)))

((. 5.) (. 5 ,)))

((. 5.) (. 5 ,)))
end of . 5;

ect in CC r s

in CC r s wp CC r Q

in CC r s wp CC r Q
CC r

∧

⇒ ∧

⇒

 18

ˆ ˆ1

2

1 2

ˆ ˆ1

2

1 1

1 1

2

. 6 ::
(. _) (.empty _
(. _) (.empty _

(.) (.put _)
(.) (.put _)

(. 6,) ()
((, (. 6.)))
((

i i

i i

i i

i i

CC r
Q in CC ho com in BS f
Q in CC ho fail in BS f
R Q Q
B in CC rtr in BS f
B in CC rtr in BS f
wp CC r R B B
B wr select in CC r s
B wr sel

= ∧

= ∧
= ∨
= ∧

= ∧
= ∨ ∧

⇒ ∧
⇒ 2

1
1 1

2
2 2

, (. 6.)))

((. 6.) (. 6 ,)))

((. 6.) (. 6 ,)))
end of . 6;

ect in CC r s

in CC r s wp CC r Q

in CC r s wp CC r Q
CC r

∧

⇒ ∧

⇒

)
)

)

)

)

i

i

)

)

1

2

1 2

1

2

1 1

1 1

2

. 3 ::
(. _) (.empty _)
(. _) (.empty _

(.empty_) (. _)
(.empty_) (. _)

(. 3,) ()
((, (. 3.)))
((

HC r
Q in HC ho com in CC l
Q in HC ho fail in CC l
R Q Q
B in HC l in CC ho com
B in HC l in CC ho fail
wp HC r R B B
B wr select in HC r s
B wr sele

= ∧
= ∧
= ∨
= ∧
= ∧

= ∨ ∧
⇒ ∧
⇒ 2

1
1 1

2
2 2

, (. 3.)))

((. 3.) (. 3 ,)))

((. 3.) (. 3 ,)))
end of . 3;

ct in HC r s

in HC r s wp HC r Q

in HC r s wp HC r Q
HC r

∧

⇒ ∧

⇒

. 4 ::
(.) (.)

(. 4,) (. _
(. 4,) (.)

end of . 4;

i

i

HC r
Q in HC idle in E active
wsp HC r Q in HC ho fail
wcr HC r Q in E passive

HC r

= ∧

=
=

. 6 ::
(.) (.put_)

(. 6,) (.empty _)
(. 6,) (. _)

end of . 6;

BS r
Q in CC rtr in HC l
wsp BS r Q in CC l
wcr BS r Q in HC ho com

BS r

= ∧
=
=

. 7 ::
(. _) (.empty_

(. 7,) (.)
(. 7,) (.put _)

end of . 7;

i

BS r
Q in CC relch m in HC l
wsp BS r Q in CC rtr
wcr BS r Q in HC l

BS r

= ∧

=
=

. 8 ::
(.) (.put _)

(. 8,) (.empty _)
(. 8,) (. _)

end of . 8;

i i

i i

i

BS r
Q in BS rtr in CC f
wsp BS r Q in BS f
wcr BS r Q in CC relch m

BS r

= ∧

=
=

. 9 ::
(. _) (.empty _)

(. 9,) (.)
(. 9,) (.put _)

end of . 9;

i i

i

i

BS r
Q in BS relch m in CC f
wsp BS r Q in BS rtr
wcr BS r Q in CC f

BS r

= ∧

=
=

. 10 ::
(. 10, (. _)) (. _)
(. 10, (. _))

end of . 10;

i i i

i i

BS r
wsp BS r in BS free m in BS relch m
wcr BS r in BS free m true

BS r

=
=

. 7 ::
(.) (.put_)

(. 7,) (.empty_)
(. 7,) (. _)

end of . 7;

i i

i

i i

CC r
Q in CC rtr in BS f
wsp CC r Q in CC f
wcr CC r Q in BS free m

CC r

= ∧

=
=

. 8 ::
(. _) (.)

(. 8,) (.)
(. 8,) (.put_)

end of . 8;

i i

i i

CC r
Q in CC free m in BS passive
wsp CC r Q in CC rtr
wcr CC r Q in BS f

CC r

= ∧

=
=

. 5 ::
(. _) (.empty _

(. 5,) (.empty_)
(. 5,) (. _)

end of . 5;

i

i

HC r
Q in HC free m in CC inp
wsp HC r Q in HC l
wcr HC r Q in CC free m

HC r

= ∧

=
=

ˆ

. 6 ::
(.) (.)

(. 6,) (. _
(. 6,) (.)

end of . 6;

i

i

i

HC r
Q in HC idle in E active
wsp HC r Q in HC free m
wcr HC r Q in E passive

HC r

= ∧

=
=

% End of the handover %

 19

	Specifying Mobile Network using a wp-like Formal Approach
	Awadhesh Kumar Singh\(Umesh Ghanekar†
	Anup Kumar Bandyopadhyay‡
	Abstract
	Introduction
	The Split Precondition Logic (SPL)

	Thus, the total weakest precondition will be given by
	Example
	STATE
	SEMANTICS
	STATE
	SEMANTICS

	With reference to above states we can represent the state tr
	Process P1 ; identified by P1 ;
	P.r ::
	The Handover Protocol
	Specifying Mobility in the SPL
	Discussion on the Approach
	Verification of the Handover Protocol
	Conclusion

	References

