
Combining Symbolic Execution and Model Checking to

Reduce Dynamic Program Analysis Overhead

Néstor Cataño
∗

Abstract

This paper addresses the problem of reducing the runtime monitoring overhead for pro-
grams where fine-grained monitoring of events is required. To this end we complement
model checking techniques with symbolic reasoning methods and show that, under cer-
tain circumstances, code fragments do not affect the validity of underlying properties.
We consider safety properties given as regular expressions on events generated by the
program. Further, we show how our framework can be extended to consider programs
with cycles. We sample our presentation with the aid of the Java PathFinder model
checker [13].

Keywords: model checking, Java PathFinder, symbolic reasoning, instrumentation,
monitoring, invariant strengthening.

1 Introduction

Testing is a method to check the satisfaction of a property in an implementation by means
of experimentation. In testing, test cases are designed following what the experience of
programmers suggests. Unlike other more formal techniques such as model checking and
theorem proving, testing is not complete in the sense that it can only prove the presence of
errors but not their absence.

When doing testing, in general it is not possible to cover all the possible cases for which
a program could produce an error, since that would imply, at least, considering a case for
each possible value of each variable, but variable domains are usually infinite.

Model checking [1, 2] is a verification technique especially conceived to prove properties
of reactive systems. When model checking, ideally a user would not need to interact with the
model checker at all; the user’s main work would consist in pressing the model checker “go-
ahead” button, waiting a couple of seconds, and finally, analyzing the result produced by the
model checker. In practice however, model checkers need human interaction. Additionally,
model checking techniques do not scale well for real-life problems because of the the state
explosion problem.

Symbolic reasoning [10] arises as a means to supplement testing and model checking. To
supplement testing because, when reasoning symbolically, variables are not constrained to a
concrete value but are supposed to have generic symbolic values. Hence, it is easier to cover
more test cases. Symbolic reasoning supplements model checking techniques as well, because
an explicit-state model checker can be used, for example, to explore symbolic trees. Model
checking can thus be used more effectively to prove (as opposed to refuting) properties.

In the following, we formulate the problem which this paper is concerned with. We will
then describe how model checking techniques, enhanced with symbolic reasoning, can be
used to address the problem.

∗Department of Computer Sciences, The University of York, U.K. catano@cs.york.ac.uk

The problem. We consider systems composed of two components. The first component,
a Java program in execution, is “monitored” by the second, an external observer. Monitor-
ing consists in tracking variables and their values. The observer is given as a finite-state
automaton which verifies properties expressed as regular expressions on events generated by
the program. In order for the observer to verify the property, the Java program needs to be
instrumented to transmit variables and values. This instrumentation basically consists of
many communication instructions. Since such emission (communication) instructions nega-
tively affect the performance of the program, one is faced with the problem of reducing as
many useless emissions as possible. An emission is considered to be useless when it does not
modify the semantics of the observer. The semantics of the observer is expressed as “the
ability of transition under the same program conditions”.

Here we only consider safety properties. For example, one might like to monitor that
“the temperature never exceeds 100 degrees”, where the temperature is given by variable
temp in the program; hence, the value of temp will be emitted to the observer whenever
temp is updated and the observer will make a transition when (temp > 100) is true.

This paper. We use model checking techniques to address the problem of reducing the
number of such useless emissions for programs where fine-grained monitoring of events is
required. We define fine-grained monitoring as those cases where many statements in the
program can affect the observations, for example, in the case where the specific value of a
variable is tracked. To monitor a certain variable x, instructions emit(x) must be introduced
in the Java program in any place where x is modified; emit(x) communicates the variable
x and its current value to the observer. Although we will focus our presentation on fine-
grained monitoring, techniques proposed here will also work for larger-scale monitoring, but
will not have the same degree of effectiveness.

We propose the use of model checking to show that for certain code fragments, under
certain conditions, no emission will be required since it cannot affect the property that
is checked. Specifically, we will show how to determine whether program statements will
change the state of some observer, by doing a symbolic execution of the code within the
Java PathFinder (JPF) model checker [13]. JPF has been recently extended with the capacity
of doing symbolic reasoning [8], and it is this feature that we will use here to show under
which conditions a program statement can change the state of an observer.

In some cases, model checking can show conclusively that a program will behave correctly
according to some property, i.e. any execution of the program will be correct. However,
model checking is in general much better at finding counterexamples than showing that a
program is correct. Since our approach relies on the model checker being able to show that
a property holds, rather than showing a refutation, we believe that symbolic reasoning is
more appropriate than model checking based on explicit enumeration.

Since our approach essentially starts from the assumption that every statement poten-
tially changes the state of the monitoring system, with model checking then used to reduce
this number of observations, the scalability of model checking influences the accuracy and
not the correctness of our approach. In other words, the more analysis is done with the
model checker, the less runtime overhead during monitoring.

Contributions. This paper shows how model checking techniques — when supplemented
with symbolic reasoning methods — can effectively be used to show that a certain prop-
erty holds. The major weakness of the symbolic execution within JPF is that cycles cannot
be handled in their full generality: when doing symbolic execution, JPF cannot determine
whether a state has been revisited, and therefore the analysis will not terminate. To over-
come this, we show how classical reasoning about loop invariants can be used within our
framework to deal with cycles. Roughly speaking, when a loop invariant is known, emis-
sions are added to the program only when they do not contradict the invariant. The other

emissions are useless and therefore should not be added.
Although, in general, finding loop invariants is an undecidable problem, we show how

symbolic reasoning can be used to show that a property is a loop invariant. To do so, a
loop invariant is conjectured — it is assumed at the beginning of the loop-body, and then
checked immediately before its end — and successively refined, based on the information
given by the symbolic execution of the loop.

The rest of this chapter. The rest of the chapter is structured as follows. Section 2
formalizes the problem of removing useless emissions when instrumenting programs in our
framework. Section 3 introduces symbolic execution of programs. Ideas presented in this
section provide a theoretical basis for a better understanding of subsequent sections. Sec-
tion 4 gives an overview of the symbolic execution framework built on top of JPF. Section 5
presents how model checking with symbolic reasoning can be used to show the existence of
useless emissions of non-looping programs. Section 6 extends Section 5 to consider loops.
Lastly, Section 7 concludes and compares to related work.

2 Semantics of the observer

When running, a program generates events that can produce changes in the current state
of the observer. We are interested in fine-grained monitoring, so any change of a specific
variable value can potentially affect the semantics of (the current state of) the observer.
Hence, only if each variable is tracked and its value sent to the observer (who will lastly
check the property), the monitoring will be effective. To achieve an effective tracking, we
instrument programs in such a way that emission statements are added in those parts of the
code where modifications of variables are produced. These emission statements transmit the
current value of the involved variables.

Emissions are “expensive”, so having many of them will affect the performance of the
program. We wish to remove as many useless emissions as possible. Useless emissions are
those that, regardless of the transmitted values, will not make the observer transition.

To be tracked, instructions must be associated to locations. This association is only
possible for non-looping programs. For looping programs this association cannot be done
because in the general case the number of loop iterations cannot be decided without execut-
ing the loop itself. Section 6 presents our approach in dealing with loops. The rest of this
section defines in detail the semantics of the observer.

Instructions and program locations. We call i(loc) the program instruction occur-
ring at the program location loc. In the program below, method m declares a sole variable
x which is then increased four times. Locations have been added into the program as
comments; i(0) makes allusion to the instruction declaring the variable x, and successive
instructions increasing variable x are referred to as i(1) through i(4). The set of program
locations is called L.

static void m() {

0: int x = random();

1: x++;

2: x++;

3: x++;

4: x++;

}

0
a

1 2
a

b

Figure 1: Automaton for (ab)+

Instrumentation. Program instrumentation is accomplished by adding a single emission
statement emit(loc,−→x) after each instruction i(loc), where −→x represents the set of vari-
ables involved in the execution of the instruction. Emission emit(loc,−→x) sends the observer
each variable in −→x as well as its value.

Event generation. When a program is executed, it generates events that can make the
observer transition. We define events generated by programs as having type Ep : Vr × Vl

between variables Vr and values Vl, with the intuitive meaning “if one is interested in events
as described by the relational operator Ep, and after the execution of a certain instruction
the value of variable x becomes v, then the event as described by Ep(x,v)1 is produced by
the execution of the instruction”.

The event generation relation Evt : L → P(Ep) associates a location loc with the set of
events the instruction at location loc is able to produce. In our program, the event genera-
tion relation Evt depends on the value taken by x in its declaration. For instance, if x’s initial
value is 0 then Evt(0) = {x = 0}, Evt(1) = {x = 1}, Evt(2) = {x = 2}, Evt(3) = {x = 3}
and Evt(4) = {x = 4}.

Observer. We consider safety properties only, which are given as regular expressions over
events tracked by the observer. Due to the relation between regular expressions and finite-
state automata we chose these last as a model for the observer.

The observer is represented by the automaton A = (Q, F, q0, E, δ, Mp), where Q is the set
of states of the automaton, F its set of final states, q0 its initial state, E its alphabet (of
events), and δ : (Q × E) → Q its transition relation. Instructions in the program generate
a spectrum of events that should be mapped into words as understood by the automaton.
Therefore, the automaton A is provided with a mapping relation Mp : Ep → E.

As an example, the automaton observer in Figure 1 is derived from the regular property
(ab)+, and its alphabet of events E is the set {a,b}. Transitions for events other than a and
b are undefined, i.e. they are supposed to be going into a certain trapping state. A mapping
relation Mp for this automaton might, for instance, associate x=1 in the program to event a
in the observer; likewise x=3 to b.

Semantics. We define two relations on an automaton A=(Q,F,q0,E,δ,Mp). The reac-
tion relation React : L × Q → P(E) relates a location l in the program and a state q

in the automaton to the set of events e ∈ Evt(l) for which δ(q, e) 6= q. Also, relation
Stay : L × Q → P(E) is defined as the React complement relation, found when considering
elements e ∈ Evt(loc) for which δ(q, e) = q or δ(q, e) is undefined.

If variable x is initialized to 0, and Mp is the same mapping as before, the automaton will
react (make a transition) with event a each time the current state of the automaton is 2 and
the program is at location 1 — React(1,2)(a)2 holds. In contrast, when the automaton is
at state 1 and the program at location 1 no reaction will be produced, i.e. Stay(1,1)(a)

holds.

1Henceforth the more comfortable infix notation x Ep v will be used instead.
2Notice that sets are just predicates, so s ∈ S is equivalent to S(s).

Procedure ::= procedure Id(−−−−→param) Body endp;

Body ::= DeclS StmtS

DeclS ::= Decl DeclS

| Decl

Decl ::= declare Vars : Type ;

| ;

StmtS ::= StmtStmtS

| Stmt

Stmt ::= Assig

| IfStmt

| WhileStmt

| ProcInv

| Return

| ;

Assig ::= Var := Exp

IfStmt ::= if(Cond) Body1 else Body2

WhileStmt ::= while(Cond) do Body

ProcInv ::= Id(
−−−→
actual);

Return ::= return(Exp)

| return

Figure 2: A simple Java imperative language

For any location l ∈ L, if for all q ∈ Q and for all e ∈ E Stay(l, q)(e) holds, then emission
at location l is useless. We want to remove all those useless emissions. We propose the
use of model checking and symbolic execution to show that under certain conditions these
removals are always possible.

Syntax for our programs. Figure 2 introduces the syntax for our programs; this syntax
is defined in a Java-like style. In the declaration of a procedure (nonterminal Procedure),
TypeRtrn is the type of the expression returned by the procedure (a boolean, an integer

or the special symbol void meaning no value), Id the name of the procedure and −−−−→param
the list of its parameters. As usual in Java-like programs, after declaring the procedure
signature, one goes on to the variable declaration section (Decl in rule for Body) and then
continues writing the procedure statements (nonterminal StmtS). Those declared variables
are exclusively bounded to the Body of the procedure.

A statement Stmt can take the form of a variable assignment, an if statement, a while

statement, a procedure invocation or simply a skip instruction “;”, doing nothing. An
assignment such as:

Var := Exp

assigns the value of the expression Exp to the variable Var. Integer expressions are formed
with the aid of the usual binary arithmetic operators +, -, * and /, and the unary arithmetic

operator -. Boolean expressions Cond are constructed from Boolean constants true and
false, and from arithmetic expressions connected by relational operators =, !=, <, <=, >, or
>=, and logical operators & (and), | (or), ! (negation) and => (implies).

An if statement as the following:

if(Cond) Body1 else Body2

executes either Body1 or Body2 depending on the truth value of Cond. Finally, the procedure
invocation:

Id(
−−−→
actual);

causes the procedure Id to be invoked with parameters
−−−→
actual. Formal parameters −−−−→param in

the declaration of the procedure Id are replaced by actual parameters, i.e. [
−−−→
actual/−−−−→param],

using the Java convention.

3 Symbolic execution of programs

The symbolic execution of a program goes through symbolic states. A symbolic state is a
tuple (xi:Xi;pc:Bool) composed of symbolic variables Xi for variables xi, and a so-called
path condition pc. The path condition is a quantifier-free boolean formula over symbolic
inputs, that accumulates constraints which inputs must satisfy in order (for an execution) to
follow the particular associated path. The initial path condition, i.e. the path condition of
the initial symbolic state, is true for any program. The path condition is updated as more
program instructions are executed. Further, a path condition is not allowed to be false

(an unreachable path). The meaning of the symbolic execution of programs is defined as
follows:

(i.) Symbolic value of expressions. Given x:X and y:Y in some symbolic state, the
symbolic value of the expression x op y is X op Y, where op is any of +, -, etc.

(ii.) Symbolic execution of assignments. The symbolic execution of an assignment x:= Exp

updates the symbolic state (x:X;pc) to the state (x:Symb(Exp),pc), where Symb(Exp) is
the symbolic evaluation of expression Exp as described by Item (i.).

(iii.) Symbolic execution of conditional statements. The symbolic execution of a condi-
tional statement if(Cond) Body1 else Body2 is accomplished according to the following
steps. (a.) First, evaluate the boolean expression Cond3, (b.) If the current path condition
pc implies Cond, then no new sub-cases is necessary because pc already contains enough
information to deduce that Body1 must be executed. If pc implies !Cond then similarly the
path condition does not require to be updated because it already contains enough infor-
mation to deduce that Body2 must be executed, else (c.) Establish a sub-case where the
path condition of the current symbolic state is changed from pc to pc & Cond, then proceed
to symbolically execute Body1, and (d.) Establish a sub-case where the path condition of
the current path condition is changed from pc to pc & !Cond, then proceed to symbolically
execute Body2.

(iv.) Symbolic execution of annotations. To symbolically execute the input annotation
assume Exp ; first evaluate Exp, i.e. Symb(Exp), and then update the path condition pc to
pc & Symb(Exp). For output annotations assert Exp ;, first evaluate Exp. And, if pc implies
Symb(Exp) then the program is correct, otherwise the program fails.

3Note that this requires counting on a decision procedure. We will not go further into this topic here; we
just assume that this decision procedure exists.

4 Symbolic execution in Java PathFinder

Our symbolic execution-based framework uses the Java PathFinder model checker (JPF) [13].
JPF is an explicit-state model checker for Java programs built on top of a custom-made Java

Virtual Machine (JVM). JPF can handle all the language features of Java, and additionally
it treats non-deterministic choice expressed in annotations of the program being analyzed.
For symbolic execution, the JPF model checker has been extended to allow backtracking
whenever a path condition is unsatisfiable. To determine the satisfiability of a formula, JPF

calls a decision procedure provided by the Omega library [12]. In particular, an annotation
ignoreIf(cond) is used to allow backtracking: whenever cond evaluates to true the model
checker will stop exploring the branch and backtrack. This feature will also be used in the
discovery of loop invariants in Section 6.

The main idea behind symbolic execution [10] is to use symbolic values, instead of actual
data, as input values, and to represent the values of program variables as symbolic expres-
sions. The state of a symbolically executed program includes, in addition to the symbolic
values of program variables, the program counter and a path condition. The path condition
is a quantifier-free boolean formula over the symbolic inputs; it accumulates constraints
which the inputs must satisfy in order for an execution to follow the particular associated
path. A symbolic execution tree characterizes execution paths followed during the sym-
bolic execution of a program. The nodes represent program states and the arcs represent
transitions between states.

As an example (taken from [8]), consider the code fragment in Figure 3, which swaps
the values of integer variables x and y, when x is greater than y. Figure 3 also shows
the corresponding symbolic execution tree. Initially, the path condition, PC, is true and x

and y have symbolic values X and Y, respectively. At each branch point, PC is updated with
assumptions about the inputs according to the possible alternative paths. For example, after
the execution of the first statement, both then and else alternatives of the if statement
are possible, and PC is updated accordingly. If the path condition becomes false, i.e. no
set of inputs satisfy it, this means that the symbolic state is not reachable, and the symbolic
execution does not continue on that path. For example, statement (6) is unreachable.

Symbolic execution techniques have traditionally come up in the context of sequential
programs with a fixed number of integer variables. In [13], these techniques have been
extended to handle dynamically allocated data structures (lists and trees), complex pre-
conditions (disallowing cyclic lists), other primitive data (strings), and concurrency. A key
feature of the algorithm implemented in JPF is that it starts the symbolic execution of a
procedure on uninitialized inputs and uses lazy initialization to assign values to these in-
puts. Consequently, the parameters are initialized when they are first accessed during the
symbolic execution of the procedure. This allows symbolic execution of procedures without
requiring an a priori bound on the number of input objects. Procedure preconditions are
used to initialize inputs with valid values only.

Recursion. The JPF algorithm implementation exploits the model checker’s search capa-
bilities to handle arbitrary program control flow. In the implementation, no requirement on
the model checker to perform state matching is done since state matching is undecidable
when states represent path conditions on unbound data. Furthermore, the symbolic execu-
tion of looping programs can explore infinite execution trees. To overcome this, Section 6
describes how to address cycles in Java PathFinder.

int x, y;

read x,y;

1: if (x > y) {

2: x = x + y;

3: y = x - y;

4: x = x - y;

5: if (x > y)

6: assert(false);

}

x: X, y: Y
PC: X<=Y

x: Y, y: X
PC: X>Y

x: X+Y, y: X
PC: X>Y

x: X+Y, y: Y
PC: X>Y

x: X, y: Y
PC: X>Y

x: X, y: Y
PC: true

3

4

2

1 1

5 5

x: Y, y: X
PC: X>Y & Y>X

FALSE!

x: Y, y: X
PC: X>Y & Y<=X

Figure 3: Code for swapping integers and corresponding symbolic execution tree.

5 Eliminating useless emissions for Java sequential pro-

grams

We use model checking and symbolic reasoning to show that we can remove useless emissions
from a program and still preserve the semantics of the observer. The observer’s semantics
is defined as “the ability of reacting under the same program conditions”, and formalized
by the predicate React in Section 2.

Consider the instrumented program below, where an emission statement has been added
into the program immediately after each modification of variable x, the only program vari-
able. Also, consider the observer for the property (ab)+ in Figure 4, and the event mapping
relation Mp which associates the event x=1 in the program to the event a in the automaton,
and x=3 to b. The automaton in Figure 4 only reacts when variable x is 1 or 3. Variable x

is initially given a nonnegative value as returned by function random; after the fourth incre-
ment of x, the value will be greater or equal than 4. Hence, the last emission will produce
no reaction in the automaton, i.e. Stay(4,q)(a) for any q∈ Q. Therefore, this emission
becomes useless and it can be removed from the instrumented program.

static void m() {

0: int x = random(); emit(0,x);

1: x++; emit(1,x);

2: x++; emit(2,x);

3: x++; emit(3,x);

4: x++; emit(4,x);

}

Below we present how the symbolic version of the program above is first elaborated and
then model checked in the symbolic execution framework of JPF. We show that the last emis-
sion can be removed from the instrumented program, while preserving the semantics of the
observer. Variable x of type int has been replaced by variable X of type SymbolicInteger,
an integer implementation for Expression. Classes SymbolicInteger and Expression are
defined in the module for symbolic execution built on top of JPF [8].

static void m() {

0: Expression X = new SymbolicInteger();

_addDet(GE,X,0);

2

x=1 a
x=3 b

a

ba
0 1

Mp:

Figure 4: Mapping for (ab)+

Emit(0,X);

1: X = X._plus(1); Emit(1,X);

2: X = X._plus(1); Emit(2,X);

3: X = X._plus(1); Emit(3,X);

4: X = X._plus(1); Emit(4,X);

}

After X is created, the condition _addDet(GE,X,0) saying that “X’s values are always
greater or equal than 0” is added4. Moreover, operations increasing x have been replaced
by method calls to X, i.e. X._plus(1).

We also need to create a symbolic version for emissions. This symbolic version takes
into account the way the automaton evolves from a particular state to another when the
program is executed. Since each emission is associated with a location, the symbolic version
Emit must be parameterized by the location.

The coding below presents the symbolic emission function Emit as it is implemented in
JPF. The variable state in the guard of the if statement represents the automaton’s current
state, and the _add instructions reflect the behavior of the automaton’s transitions. When
executing the JPF model checker on the whole symbolic program, and once the conditions
on the guard of the if statement are verified, the new conditions on X are added to the path
condition. These _add instructions encode all possible reactions of the automaton. Hence,
when the automaton stays in the same state, no new condition on X is added. Method
simplify returns the path condition on X necessary for reaching the program location loc

from the starting condition x=x_init5. Finally, method changeState updates the current
state of the automaton according to the current path condition on X.

static void Emit(int loc,Expression X) {

if(((state==0)&_add(EQ,X,1)) ||

((state==1)&_add(EQ,X,3)) ||

((state==2)&_add(EQ,X,1))) {

simplify(Expression.pc,loc,X);

changeState(X);

}

}

When the whole program is symbolically executed in Java PathFinder, the path conditions
x=1, x=0, x=1, x=0 and false for respective locations 0 to 4 are yielded. From the last
condition we conclude that the last emission will produce no reaction on the automaton for
any x’s initial value. Therefore, that emission can be removed, while the semantics of the
observer stays unchanged.

We use all those conditions on x not only for removing the last emission but for executing
the other emission statements under the conditions yielded at each respective location. The

4This reflects the fact that random in the original program always returns a nonnegative integer value.
5x init is the initial value returned by random.

final instrumentation for method m is presented below, where the previous conditions on
variable x have been integrated into the original program. The last emission will never
happen. Notice that all these conditions refer to the initial value x_init of x.

public static void m() {

int x = random();

int x_init = x;

if (x_init == 1) emit(x);

x++; if (x_init == 0) emit(x);

x++; if (x_init == 1) emit(x);

x++; if (x_init == 0) emit(x);

x++; if (false) emit(x);

}

Similar considerations can be made when dealing with the whole syntax presented in
Figure 2, except for loops. Therefore, Section 6 extends the work presented in this section
to consider loops.

6 Eliminating useless emissions in cycles

When considering cycles, a similar analysis as in Section 5 cannot be done: when doing
symbolic execution, the Java PathFinder model checker cannot determine whether a state
has been previously visited; also, because the number of loop iterations cannot be determined
beforehand, no full mapping between locations inside the loop and emission statements can
be performed.

Hence, we should do a clever analysis of the information at hand. For instance, if we
know the loop invariant, we can decide to emit only in those cases when the conditions un-
der which emissions will occur do not contradict the invariant. However, the main difficulty
is that finding loop invariants is an undecidable problem. One can also work with partial
information, i.e. one can symbolically execute the program for a fixed number n of itera-
tions, conjecture a partial invariant, and then remove any emission contradicting this partial
invariant. Obviously, the intrinsic problem is that this partial invariant can be invalidated
by a subsequent loop iteration.

In the following, we show how symbolic execution can be used to show that an initial
conjectured invariant is a real invariant, and then, how to use this invariant information to
remove emissions that produce no reaction in the automaton.

Guessing an initial conjectured invariant. First, a (symbolic) loop program is cre-
ated for which all variables controlling the way the loop iterates are symbolic. Then, this
(partially) symbolic program is executed and the path conditions generated at each loop
iteration are checked. We conjecture a loop invariant based on the partial information at
hand and proceed to prove that this conjecture is a real invariant.

We have rewritten “in a loop style” the example presented in Section 5 (see below). The
only difference resides in the fact that we now have a random number n of assignments to
x instead of a fixed number of 4 iterations. Furthermore, variable i has been introduced to
control the current loop iteration.

public static void m() {

int x = random();

emit(0,x);

int n = random();

int i = 0;

while(i < n) {

i++;

x++; emit(i,x);

}

}

The program below is the symbolic on X version of the program above, while variables i
and n remain concrete. We want to execute this symbolic program for different values of n
in order to conjecture a loop invariant. We start from n=6.

public static void m() {

Expression X = new SymbolicInteger();

_addDet(GE,X,0);

Emit(0,X);

int n = 6, i = 0;

while(i < n) {

i++;

X = X._plus(1); Emit(1,X);

}

}

When running JPF on this program, the path conditions (x=1 || x=3) for emission at
i=0, (x=0) for emission at i=1, (x=1 || x=2) for emission at i=2, and x=0 for i=3 are
established. Of the three remaining emissions for the three remaining iterations none is
performed. Then, the number of iterations is increased to n=13. This time, the previous
conditions for location 0 and for the six first iterations of the loop remain the same. No
emission is performed for the other 7 iterations. Hence, we conjecture the invariant “no
emission is performed once i becomes greater than 3” and proceed to prove whether it is a
real invariant.

Proving the conjectured invariant. In general, symbolic execution of looping programs
can produce infinite symbolic trees because another new path condition might be added each
time the loop guard is visited. Hence, if symbolic techniques are to be used to prove that
an initial conjecture Ik is a loop invariant, then the looping program must be made non-
looping, i.e. the looping program must be cut. This non-looping program, however, must
be general, in the sense that it must be representative of any symbolic execution visiting
the loop guard. To achieve this generality, loop-guard variables must be declared symbolic,
and then, when executed symbolically, their path condition initialized to the most general
condition, namely, true.

The if program in Figure 5(b) is obtained when the symbolic tree of the while program
in Figure 5(a) is cut. This new program provides a convenient way to show that the initially
conjectured property Ik is an invariant. To show that Ik is an invariant, Ik must be assumed
immediately after the guard, and then asserted immediately before the end of the body. If
the evaluation of that assertion succeeds, then Ik is inductive. Otherwise, if the evaluation
fails, the information given by the symbolic program is employed to strengthen Ik: if the
execution of assert Ik; fails producing path conditions pc1∨. . .∨pck, then Ik is strengthened
to Ik+1 = Ik ∧ ¬(pc1 ∨ . . . ∨ pck), and the whole process is restarted; this time from Ik+1.

Below we present the full symbolic loop program produced when JPF is used through this
iterative process of strengthening and checking. From Lines 2: to 4: symbolic variables for
every concrete variable — including those concerned with the loop iterations — are created.
From Lines 5: to 7:, initial conditions for these symbolic variables are added, e.g “X is

}

Body

C) {while (

declare x;

(a) while

loop

if (C) {

yes

You are done!

I is inductive

strength I with
I /\ ~ (pc1 \/ pc2 \/ ... \/ pcr)

counter−example

pc1 \/ pc2 \/ ... \/ pcr

X = symbolicOf(x);

Body

}

assume ;I

assert ;I

(b) Iterative invariant strengthening

Figure 5: Loop invariant strengthening

nonnegative”. When an if statement is executed symbolically, the guard must be asserted
as a precondition to the execution of the loop body, Line 15:. Also, the initial conjecture
has been incorporated as a necessary condition to emitting, Line 18:. Each one of Lines
9: to 13: represents an iteration refinement of the initial conjecture. Each one of these
refinements are again checked after the loop body has been executed, Lines 20: to 25:. The
last iteration produces no path condition invalidating the precedent strengthened Ik. Hence,
the loop invariant is the conjunction between the initial conjecture and each refinement.

1:public static void m() {

2: Expression X = new SymbolicInteger(),

3: N = new SymbolicInteger(),

4: I = new SymbolicInteger();

5: _addDet(GE,X,0);

6: _addDet(LT,I,N);

7: _addDet(GT,I,0);

9: ignoreIf(_add(GE,I,3)&_add(EQ,X,0));

10: ignoreIf(_add(GE,I,3)&_add(EQ,X,2));

11: ignoreIf(_add(GE,I,2)&_add(EQ,X,1));

12: ignoreIf(_add(EQ,I,1)&_add(EQ,X,0));

13: ignoreIf(_add(EQ,I,2)&_add(EQ,X,0));

15: _addDet(LT,I,N);

16: I = I._plus(1);

17: X = X._plus(1);

18: if (_add(GT,I,3)) assert(false);

20: if((_add(GE,I,3)&_add(EQ,X,0)) ||

21: (_add(GE,I,3)&_add(EQ,X,2)) ||

22: (_add(GE,I,2)&_add(EQ,X,1)) ||

23: (_add(EQ,I,1)&_add(EQ,X,0)) ||

24: (_add(EQ,I,2)&_add(EQ,X,0))

25:) assert(false);

26:}

Before being sure of whether this invariant is really inductive, a further condition must be
checked. The invariant should be valid at the initial state. This condition must be checked
in the instrumented program before the loop can be executed.

The instrumented program is shown below. From Lines 6: to 8 the initial invariant
condition is checked. For this particular example, this condition will always hold because
the initial value for i is 0. In Line 12:, the statement emit(i,x) is executed under the
initial conjecture condition. Only when the condition evaluates to true, x’s value will be
emitted. For the other cases we can not emit and still preserve the semantics of the observer,
i.e. if i>3, then Stay(i,q)(a) and Stay(i,q)(b) for any q in the observer’s set of states.

1:public static void m() {

2: int x = random(),

3: n = random(),

4: i = 0;

6: if(((i>=2)&(x==0))||((i>=3)&(x==2))||

7: ((i>=2)&(x==1))||((i==1)&(x==0)))

8: println(‘‘Invariant broken’’);

10: while(i<n) {

11: i++;

12: x++; if(!(i>3)) emit(i,x);

13: }

14:}

7 Conclusion and related work

In this paper we showed that model checking techniques can be used to reduce dynamic
program analysis overhead. Our approach basically consists in proving that certain code
fragments will generate no reaction on the automaton-based monitoring system, and hence
these code fragments can be removed. We developed our work in the framework of the Java

PathFinder model checker (JPF), although the work is still valid in the framework of any
model checker doing symbolic reasoning.

Our approach is general in the sense that there is no a priori restriction on the way
the mapping from program events into events as understood by the observer is performed.
However, when employing JPF to do symbolic execution, considered (automaton-based)
properties cannot include transitions on the same state. This is not a drawback of our
approach, but an aspect where the JPF model checker can be improved.

A drawback of the approach presented in this paper is that the refinement process is
not always convergent and hence, it could happen that an invariant is never obtained, even
though the invariant might exist. The whole process depends on the initial conjectured
invariant and on the way each successive strengthened Ik+1 is calculated.

C. Pasareanu and W. Visser in [11] propose an heuristic to achieve termination in this
iterative process of strengthening. Yet, their problem is slightly different to that presented
here. They are interested in showing that a loop program respects some property P6. They
use an invariant strengthening algorithm similar to that described before, but additionally,
at each step k of strengthening, the “exact” invariant Ik is newly strengthened iteratively. In
this new strengthening process, the effect produced by the assertion of Ik at the end of the
loop-body is not considered. If an error exists, then the method is guaranteed to terminate.
If the program is correct with respect to the property, the method might not terminate.

6That is, assert P; is added immediately after the loop statement.

In [6, 7], K. Havelund and G. Rosu report on runtime verification in the framework
of Java PathExplorer. It is composed of three main modules, namely, an instrumentation
module, an interconnection module, and an observer module. The instrumentation module
modifies the program byte codes so that relevant emissions are sent to the interconnection
module, which in turn will retransmit these events to the observer module. The observer
module checks for validity of temporal properties. Ideally, techniques to reduce program
analysis overhead presented in this paper would serve as basis to enhance the runtime
verification labor done by Java PathExplorer.

Two tools close to Java PathExplorer are Java-MaC (M. Kim, S. Kannan, I. Lee and O.
Sokolsky in [9]) and DynaMICs (A.Q. Gater, S. Roach, O. Mondragon and N. Delgado in [5]).
Java-MaC separates monitoring task from checking task. This separation makes Java-MaC

an extensible open architecture. Unlike Java PathExplorer, in DynaMICs, properties targeted
for verification are expressed as constraints. For instance, for the problem of the division of
two integers x and y, yielding a quotient q and a reminder r, two constraints can be defined:
r < y and (q× y) + r = x.

C. Flanagan and Sh. Qadeer in [4] present an abstraction-based method to infer loop
invariants. They infer loop invariants to verify programs that manipulate unbound data
such as arrays. Loop invariants for each loop are computed by iterative approximation. The
problem of their approach is that it requires ingenuity in finding the initial property for
iterative approximation.

T. Colcombet and P. Fradet in [3] propose a method to enforce trace properties. The
programmer specifies the property T separately from the program P, and a “transformer”
takes T and P and produces another equivalent program that satisfies the property. They
only consider safety properties. An advantage of the work presented in this paper is that we
consider not just “plain” events, but also values of variables and symbolic constraints over
these variables.

As future work we plan to formalize and prove theorems to establish precisely the kind
of programs that can be monitored with the methodology presented in this paper.

Acknowledgements. Thanks to Dr. Willem Visser for inviting me to NASA Ames in the
summer of 2002, when this work was mainly carried out, and discussing topics on model
checking and symbolic methods. Thanks to Dr. Corina Pasareanu with whom I had fruitful
discussions on automatic loop-invariant generation.

References

[1] B. Bérard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit L. Petrucci, Ph. Schnoebelen,
and P. Mackenzie. Systems and Software Verification: Model-Checking Techniques and
Tools. Springer-Verlag, 1999.

[2] E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. MIT Press, 2000.

[3] T. Colcombet and P. Fradet. Enforcing trace properties by program transformation.
In Proceedings of the 27th ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages, pages 54–66, 2000.

[4] C. Flanagan and S. Qadeer. Predicate abstraction for software verification. In Proceed-
ings of the 29th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 191–202. ACM Press, 2002.

[5] A.Q. Gates, S. Roach, O. Mondragón, and N. Delgado. DynaMICs: Comprehensive
support for run-time monitoring. In K. Havelund and G. Rosu, editors, Electronic Notes
in Theoretical Computer Science, volume 55. Elsevier, 2001.

[6] K. Havelund and G. Rosu. Java PathExplorer — a runtime verification tool. In Proceed-
ings of 6th International Symposium on Artificial Intelligence, Robotics and Automation
in Space, ISAIRAS’01, Montreal, Canada, Jun. 18–22 2001.

[7] K. Havelund and G. Rosu. Synthesizing monitors for safety properties. In Tools and
Algorithms for Construction and Analysis of Systems, pages 342–356, 2002.

[8] S. Khurshid, C. Pasareanu, and W. Visser. Generalized symbolic execution for model
checking and testing. In Proceedings of TACAS03: Tools and Algorithms for the Con-
struction and Analysis of Systems, volume 2619 of Lecture Notes in Computer Science,
Warsaw, Poland, Apr. 2003.

[9] M. Kim, S. Kannan, I. Lee, O. Sokolsky, and M. Viswanathan. Java-MaC: a run-time
assurance tool for Java programs. In K. Havelund and G. Rosu, editors, Electronic
Notes in Theoretical Computer Science, volume 55. Elsevier, 2001.

[10] J.C. King. Symbolic execution and program testing. Communications of ACM,
19(7):385–394, 1976.

[11] C. Pasareanu and W. Visser. Verification of Java programs using symbolic execution
and invariant generation. In Proceedings of Model Checking Software: 11th International
SPIN Workshop, Lecture Notes in Computer Science, Barcelona, Spain, Apr. 1-3 2004.
Springer-Verlag.

[12] W. Pugh. The Omega test: A fast and practical integer programming algorithm for
dependence analysis. Communications of the ACM, 31(8), Aug. 1992.

[13] W. Visser, K. Havelund, G. Brat, and S.J. Park. Model checking programs. In Proceed-
ings of the 15th IEEE International Conference on Automated Software Engineering,
Grenoble, France, Sept. 2000.

