
Representing WSDL with Extended UML

V. de Castro, E. Marcos and B. Vela ∗

Abstract

Web services are emerging to provide a systematic and extensible framework for interac-
tions of applications, built on existing Web protocols and based on open XML standards.
In spite of the existence of several middleware platforms that support Web service devel-
opment, the lack of a solid methodological base for the development of Web services, as
well as service-oriented applications, give rise to the need of methods or modeling tech-
niques that guarantee the quality in the development of this kind of applications. MIDAS
is a model-driven methodological framework for the agile development of Web Informa-
tion Systems (WIS). MIDAS is based on Model Driven Architecture (MDA) and defines
Platform Independent Models (PIMs) and Platform Specific Models (PSMs) according to
the aspects of content, hypertext and behavior; it proposes some mapping rules between
the different models. MIDAS proposes to model the behavior of a WIS following the
service oriented approach. In this work we focus on the proposed PSM for WIS behavior
modelling, presenting the UML extension for the representation of Web Service Descrip-
tion Language (WSDL). The proposed extension provides a UML notation which on one
hand, allows obtaining graphic representation of a Web service and, on the other hand
facilitates the automatic generation of WSDL code from a UML diagram.

Keywords: UML extension, WSDL, Web Service Modeling, Web Information Systems.

Resumen

Los servicios Web proveen un marco sistemático y extensible para la interacción de
aplicaciones a través de la Web, basado en XML y construido sobre protocolos Web
existentes. Aunque existen varias tecnoloǵıas que facilitan el desarrollo, la carencia de
una metodolǵıa sólida para el desarrollo tanto de servicios Web, como de aplicaciones
orientadas a servicios, plantea la necesidad de nuevos métodos o técnicas de modelado
que puedan garantizar la calidad en el desarrollo de este tipo de aplicaciones. MIDAS
es un marco metodológico orientado a modelos para el desarrollo de Sistemas de
Información Web. MIDAS está basado en MDA (Model Driven Architecture) y propone
modelos PIM (Platform Independent Models) y PSM (Platform Specific Models) acorde
a tres aspectos: Contenido, Hipertexto y Comportamiento; además define gúıas para la
generación de modelos y para la transformación de los mismos. En MIDAS proponemos
modelar el comportamiento del SIW desde una perspectiva orientada a servicios y en
este trabajo presentamos uno de los PSM propuestos para ello, llamado WSDL Model.
Dicho modelo es una extensión de UML para el modelado de servicios Web, basada en
el estándar Web Service Description Language (WSDL). La extensión propuesta aporta
una notación en UML que, por un lado, permite obtener una representación gráfica de
un servicio Web y por otro, facilitará la generación automática de código WSDL a partir
de un diagrama UML.

Palabras clave: extensión de UML, WSDL, modelado de servicios Web, sistemas de
información basados en la web.

∗Kybele Research Gruop - Rey Juan Carlos University - Madrid (Spain)
{emarcos,vcastro,vbela}@escet.urjc.es



1 Introduction

In the last decade, many businesses and organizations have used different approaches to in-
teract with others taking the advantages and infrastructure of the Web. Web services are
emerging to provide a systematic and extensible framework for application-to-application in-
teractions, built on existing Web protocols. Web services are based on open XML standards
and define a standardized mechanism to describe, locate and communicate with online ap-
plications [6]. Now, the services are one of the most important issues in the scope of Web
Information Systems (WIS) development. There are several middleware platforms, such as
JAVA or .NET that allow implementing Web services and facilitate the service-oriented ap-
plications development. However, the lack of a solid methodological base for the development
of Web services, as well as service-oriented applications give rise to the need of methods or
modeling techniques that can guarantee the quality in the development of this kind of appli-
cations.

In the last years a large amount of modeling techniques and methodologies for the devel-
opment of WIS [5, 7, 9] and service-oriented WIS [18] have appeared. MIDAS [4, 13] is a
model-driven methodological framework for agile development of WIS, that proposes to use
standards in the development process. It is based on XML [3] and proposes to model the
whole system in UML [15].

MIDAS defines Platform Independent Models (PIMs) and Platform Specific Models
(PSMs) according to three aspects [11]: content, hypertext and behavior, and also proposes
some mapping rules between the different models. As MIDAS proposes to use UML notation
to model the whole system, both the PIMs and PSMs will be represented in this notation. In
this work we focus on the WIS behavior modeling and we present one of the PSMs proposed
by MIDAS for this purpose.

MIDAS proposes to model the behavior of a WIS following the service oriented approach,
in [11] we have presented an approach to obtain a navigation model which integrates the struc-
tured information and the services, providing a unified view of the structural and behavioral
aspects of a WIS. We define a service as a specific functionality that the WIS offers to the
user. A service is a conceptual definition which will exist just at PIM level. A service could be
represented, at PSM level, by one Web service or by the composition of several Web services.
So, a service can be basic for example to validate an email address; or a composite as to
locate the best prices on ticket airlines that probably involve many basic services. The basic
and composite services concepts are introduced in [16]. So much basic services as composite
services utilize ”service description” to offer their functionality so that they can be located
and utilized through the Web.

A Web service is a software component, independent from platform and implementation,
that can be: described using a service description language, published to a registry of services,
discovered through a standard mechanism, invoked through a declared API (Applications
Programming Interface) and composed with other services [8].

Web Services Description Language (WSDL) [20] is the language to describe Web services
proposed by the World Wide Web Consortium (W3C). WSDL describes three fundamental
properties of the Web service: what a service does (the operation that the service provides),
how a service is acceded (details of the data formats and protocols necessary to access the
service’s operation) and where a service is located (details of protocols-specific network
address, such as URL). In this work a UML extension for Web service representation based
on WSDL is proposed. This extension has been carried out with a double purpose: on one
hand, to give a UML notation that allows representing a Web service and, on the other hand,
to facilitates the automatic generation of WSDL description of a Web service from an UML
diagram.



Some other related works with Web service modeling and automatic WSDL code generation
have appeared during the last years [2, 23]. However these proposals have some limitations
with respect to our goals. The extension proposal in [2] is not complete, since it does not allow
operations and parameters modeling, neither relation between these components and others
like input or output messages. Since one of our goals is to make easy the automatic generation
of Web services description in WSDL from a UML diagram, it will be necessary to define
modeling guidelines that allow representing all the needed issues for Web services description
maintaining the main benefit of modeling that is the reality abstraction. The XMLSPY5 case
tool [23] allows automatic generating of WSDL documents, but starting from its own graphical
notation instead of from an UML diagram.

The rest of the paper is structured as follows: section 2 is an overview of the MIDAS
methodology that represents the framework of this work. In section 3 the WSDL metamodel
is described. In section 4 the UML extension for WSDL is proposed, in section 5 we present
a case study using the proposed notation. Finally, in section 6, we conclude underlining the
main contributions and the future works.

2 MIDAS Framework

MIDAS is a model-driven methodological framework for agile development of WIS, it is based
on the OMG’s Model-Driven Architecture (MDA) [14], that proposes: a) to specify the whole
system with Computation Independent Models (CIM), Platform Independent Models (PIM)
and Platform Specific Models (PSM); b) to generate the mapping rules between the models.
MIDAS suggests using the Unified Modeling Language [15] (UML) as unique notation to model
both PIMs and PSMs. It also proposes using some practices coming from agile methodologies,
as eXtreme Programming [1].

As it is stated in [10], at the modeling level it is important to identify the different aspects
of the system in order to model them independently. To identify the aspects of a WIS, as
MIDAS follows a service oriented approach, we have taken as a reference the middleware
architectures of the Web service development platforms, as .NET or J2EE. So, we propose a
n-tier model architecture. Until now, our approach considers three aspects corresponding with
the three tiers most commonly accepted: graphic user interface, persistence and business logic
tiers. For the sake of uniformity with the most commonly used Web Engineering terminology,
these aspects will be called hypertext, content and behavior respectively [17]. The advantage
of this n-tier model architecture is that it is easily scalable; so, to incorporate new aspects, as
security or management, we have just to introduce a new tier.

Summing up, MIDAS propose to model the WIS according to two orthogonal dimensions
(see figure 1): a) the MDA approach of the OMG: that is, the dependence degree of the
platform; b) the n-tier model architecture previously defined: that is, the aspects to be con-
sidered in a WIS. So, it defines PIMs and PSM models for each of the aspects above identified,
hypertext, content and behavior, as well as the mapping rules between them.

As stated above, MIDAS proposes to model the behavior of the WIS following the service
oriented approach. In this work we propose an UML extension that we call WSDL model, for
the Web service modeling at PSM level. The MIDAS framework has been partially presented
in [4]; the UML extension for object-relational, XML schema can be found in [12, 19]; in
[13, 11] can be found the development process of the content aspect.

For the WSDL model definition we will describe the WSDL metamodel and then we will
present the UML extension proposed and a case study in which it has been applied.



Figure 1: Midas Framework

3 WSDL Metamodel

WSDL [20, 21] is the language proposed by the W3C for Web services description. A WSDL
document is a XML document which specifies the operations that a service can perform. One
of the advantages of WSDL is that it allows separating the abstract functionality descrip-
tion offered by a service from the concrete details description, such as message format and
communication protocol that can be SOAP, HTTP or MIME.

WSDL describes the Web services through the messages that are exchanged between the
service provider and requester. The messages exchange between the service provider and
requester are described as an operation. A collection of operations is called a port type, which
define the service interface in an abstract way. The binding between a port type and both
network protocol and message format, define the service interface in a concrete way. A service
defines one or more port. A port indicates the concrete interface localization.

Figure 2 shows the WSDL metamodel represented by an UML class diagram. The shad-
owed components represent the concrete issues of the service description and the rest represent
abstract issues of service description.

A WSDL document contains a version number and a root DEFINITION component. It
has a Name and TargetNameSpace attribute and zero or more namespaces. The namespaces
are used to avoid naming conflicts when several services or applications are integrated. A DE-
FINITION component contains: a TYPES component and zero or more MESSAGE, PORT-
TYPE, BINDING and SERVICE components. All WSDL components can be associated with
a DOCUMENTATION component.

A TYPES component is used for data type definitions which will be used in messages. For
this purpose WSDL is based on XML Schema [22] and contains a SCHEMA component in
which namespaces and data types are defined. WSDL allows including XML Schemas docu-
ments previously defined, using a INCLUDE component for it which indicates the document
location. In the same way the IMPORT component is used to reuse WSDL documents, the
document name and location are needed.

The PORTTYPE component is the most important component in WSDL, since it describes
the operations that the service offers, that is, the interface. The OPERATION component
groups the set of messages that will be interchanged between service provider and requester.
Each operation can be associated with one, two or three messages, that is, one input message,
one output message or both, and optionally a fault message. A MESSAGE contains a Name



Figure 2: WSDL metamodel represented in UML

attribute and zero or more PART components. The PART component describes one portion
of a particular message that a Web service sends or receives. The type associated to a PART
can be a base type XSD (int, float, string, etc.) or a type defined in the TYPES section. In
this last case, the data type can be defined by means of a type or element attribute.

A BINDING component describes the binding of a PORTTYPE component and the asso-
ciated operations to a specifically defined message format and communication protocol, such
as SOAP, HTTP or MIME [21]. WSDL defines different components to describe each one of
these protocols. However a detailed discussion on message format and communication protocol
is beyond the scope of the present work and will be boarded in future works.

A SERVICE component contains a Name attribute and describes the set of PORTs that
a service provides. A PORT component contains a Name attribute. It is related with the
BINDING component that describes how and where (by the location attribute) to interact
with the service interface.

4 Representing WSDL with UML

As we have already said, we propose to represent WSDL with UML. So, we have to extend
it so that it allows us to represent each one of component proposed by WSDL and described
in the previous section. UML has been designed to be extended in a controllable way. This
mechanism enables us to create new types of building blocks by means of stereotypes, tagged
values and constraints. According to [5] a UML extension should contain: a brief description
of the extension; the list and description of the stereotypes, tagged values and constraints;
and a set of well-formedness rules that are used to determine whether a model is semantically
consistent. For each stereotype we have to specify the common properties and semantics
that go beyond the basic element being stereotyped by defining a set of tagged values and
constraints for the stereotype [15].

Before showing the proposed UML extension in section 4.2, we will explain the design
guidelines that have been defined for the representation of WSDL in extended UML.



4.1 Design Guidelines for the UML Extension

To choose the necessary stereotypes to represent in UML all of WSDL components and the
relationships between them, the following design guidelines are defined:

• DEFINITION component has been considered as stereotyped class because they are
explicitly defined in WSDL and constitute the root component that groups all the used
elements.

• TYPES and SCHEMA components have been considered compositions stereotyped with
�TypeSchema� and represent the relation between a DEFINITION component and the
data type definitions.

• MESSAGE, PART, PORT TYPE, OPERATION, BINDING, PORT, SERVICE and
IMPORT components have been considered stereotyped classes because they represent
important components and explicitly defined in WSDL.

• MESSAGE component will be related to the PART component that it uses by means of
a composition.

• The relationship between a PART component and an ELEMENT component will be
represented by means of an association stereotyped with �Part Type� if the PART
component uses the ELEMENT as a type, and by means of an association stereotyped
with �Part Elements� if the PART component uses the ELEMENT as an element.

• The relation between the OPERATION component and the MESSAGE component will
be represented by means of an association stereotyped with �Imput� , �Output� o
�Fault� , depending on the type of message that it associates, that is an input message,
an output message or a fault message.

• MESSAGE, PORTTYPE, BINDING, SERVICE e IMPORT components will be related
to the DEFINITION component by means of a composition.

• PORTTYPE component will be related to the OPERATION component that it uses by
means of an aggregation.

• BINDING component will be associated to the PORT TYPE component that it de-
scribes.

• SERVICE component will be related to the PORT components that it provides by means
of a composition.

• The PORT component will be associated to the BINDING component that it uses.

• As we have already said, WSDL uses XML Schema for data type definitions that will
be used for message sending. For this reason we use the UML extensions to represent
XML Schemas proposed in [19].

4.2 The UML extension

This UML extension defines a set of stereotypes, tagged values and constraints that enable
us to represent WSDL in graphical notation in UML. The UML extension is defined for the
specific WSDL components proposed by the W3C. Each WSDL component should be able to
be represented in graphical notation with this UML extension.



• Class DEFINITION

Metamodel class: Class
Description: A class represents a �DEFINITION� component of the WSDL meta-
model.
Attribute: TargetNameSpace is an URI (Uniform Resource Identifier). It is mandatory
and identifies the namespace which it will belong all of the component names.
Tagged values: other namespaces that will be used in the Web service description.

• Class ELEMENT
Metamodel class: Class
Description: An �ELEMENT� class represents an element of the XML Schema.
Constraints: It must be related to the �DEFINITION� class by means of a composi-
tion stereotyped with �Type Schema�.
Tagged values: The name of the element, the base type and the minimum and maximum
number of occurrences.

• Composition Type Schema
Metamodel class: composition
Description: A �Type Schema� composition represents a relationship between the
DEFINITION component of the WSDL metamodel and the data types defined by
means of element of the XML Schema.
Constraints: It can only be used to join a �DEFINITION� class with the
�ELEMENT� class that uses it.
Tagged values: The namespace defined for SCHEMA component.

• Class MESSAGE
Metamodel class: Class
Description: A �MESSAGE� class represents a MESSAGE component of the
WSDL metamodel.
Constraints: It must be related to the �DEFINITION� class by means of a composi-
tion and must be associated to at least one �PART� class.

• Class PART
Metamodel class: Class
Description: A �PART� class represents a PART component of the WSDL meta-
model.
Constraints: It must be related to one �MESSAGE� class by means of a composition.
Attribute: Type is a base type XSD. It is optionally and must be defined when the
PART component uses a base type but not when the PART component uses an element
of the XML Schema.

• Association Part Type and Part Element
Metamodel class: Association
Description: A �Part Type� or �Part Element� association represents a rela-
tionship between a PART component of the WSDL metamodel and an element of the
XML Schema.
Constraints: A �Part Type� association can only be used to join a �PART� class
with an �ELEMENT� class when a PART component uses the element as a type.



A �Part Element� association can only be used to join a �PART� class with an
�ELEMENT� class when a PART component uses the element as a element.

• Class PORTTYPE
Metamodel class: Class
Description: A �PORTTYPE� class represents a PORTTYPE component of the
WSDL metamodel.

Constraints: It must be related to the �DEFINITION� class by means of a
composition and must be associated at less one �OPERATION� class.

• Class OPERATION
Metamodel class: Class
Description: An �OPERATION� class represents an OPERATION component of
the WSDL metamodel.
Constraints: It must be related to the �PORTTYPE� class by means of an aggrega-
tion.

• Association Input, Output and Fault
Metamodel class: Association
Description: an �Input�, �Output� or �Fault� association represents a relation-
ship between an OPERATION component and MESSAGE component of the WSDL
metamodel.
Constraints: A �Input� association can only be used to join an �OPERATION�
class with a �MESSAGE� class when the message is an input message. A �Output�
association can only be used to join an �OPERATION� class with a �MESSAGE�
class when the message is an output message. A �Fault� association can only be used
to join an �OPERATION� class with a �MESSAGE� class when the message is a
fault message.

• Class BINDING
Metamodel class: Class
Description: A �BINDING� class represents a BINDING component of the WSDL
metamodel.
Constraints: It must be related to the �DEFINITION� class by means of a composi-
tion and it must be associated to only one �PORTTYPE� class.

• Class SERVICE
Metamodel class: Class
Description: A �SERVICE� class represents a SERVICE component of the WSDL
metamodel.
Constraints: It must be related to the �DEFINITION� class by means of a composi-
tion and it must be composed by at least one �PORT� class.

• Class PORT
Metamodel class: Class



Figure 3: WSDL description of a ”ValidateEmail” Web Service

Description: A �PORT� class represents a PORT component of the WSDL meta-
model.
Attribute: Location is an URL (Uniform Resource Locator). It is mandatory and
identifies the access point to the service.
Constraints: It must be related to the �DEFINITION� class by means of a composi-
tion and must be associated to only one �BINDING� class.

• Class IMPORT
Metamodel class: Class
Description: An �IMPORT� class represents an IMPORT component of the WSDL
metamodel.
Attribute: Namespace is an URI (Uniform Resource Identifier). It is mandatory and
indicates that the containing WSDL document can contain references to the WSDL def-
initions in that namespace. Location is an URI. It is optional and indicates the location
of some information for the namespace.
Constraints: It must be related to the �DEFINITION� class by means of a composi-
tion.

5 A Case Study

In this section we show through a case study the UML extension proposed for the represen-
tation of WSDL. The case study consists of a service for validating an email address called
”ValidateEmail”. Figure 3 shows the ”ValidateEmail” Web service description in WSDL.

The Web service defines one operation ”ValidateEmailAddress” which has two messages,
an input and an output message. The input message ”ValidateEmailAddressSoapIn” defines
one part, ”ParametersIn” which uses the element ”ValidateEmailAddress” as a data type.
The output message ”ValidateEmailAddressSoapOut” defines also one part ”ParametersOut”



Figure 4: Representation of the DEFINITION component

Figure 5: Representation of the ELEMENT, TYPES and SCHEMA components

which uses the element ”ValidateEmailResponse” as a data type. Both, ”ValidateEmailAd-
dress” and ”ValidateEmailResponse” elements have been defined in the section types. The
porttype ”EmailServicePortType” groups the operations that will be performed by the service
that in this case is only one. The link between this port type and the SOAP protocol is
described by the ”EmailServiceBinding” element. The service has only one port ”EmailSer-
viceSoap”, which defines through an URL the Web service location.

Figure 4 shows the UML representation of the DEFINITION component. The Name
attribute will be the name of the class and the TargetNameSpace attribute will be represented
as a class attribute. The used namespaces will be represented as tagged values. For clarity
reasons a tagged value will be represented as a note associated to the element that uses it.

Figure 5 shows the �TypesSchema� composition that represents a relationship between
the �DEFINITION� class and the data types defined, ”ValidateEmailAddress” and
”ValidateEmailResponse”. The TargetNameSpace attribute of SCHEMA component will be
represented as tagged values.



Figure 6: Representation of the MESSAGE and PART components

Figure 6 shows the representation of the MESSAGE and PART components. The ”Val-
idateEmailAddressSoapIn” message contains one part which has associated the ”Valida-
teEmailAddress” element as a data type, by means of the element attribute. Therefore, the ex-
isting association between ”ParametersIn” part and ”ValidateEmailAddress” element is stereo-
typed with �Part Element�. In the same way, the existing association between ”Parame-
tersOut” part and ”ValidateEmailResponse” element is stereotyped with �Part Element�.

Figure 7 shows the representation of the PORTTYPE and OPERATION components.
The ”EmailServicePortType” uses one operation ”ValidateEmailAddress”, therefore an aggre-
gation is represented between them. The operation defines two messages, the input message
”ValidateEmailAddressSoapIn” is related with the operation ”ValidateEmailAddress” by mean
a �Input� association and the output message ”ValidateEmailAddressSoapOut” is related
with the operation ”ValidateEmailAddress” by mean a �Output� association.

Figure 8 shows the representation of the BINDING component, without representing con-
nection with SOAP protocol. The ”EmailServiceBinding” describe the binding to the port-
type; therefore an association between the ”EmailServiceBinding” binding and the ”EmailSer-
vicePortType” porttype is represented.

Finally, figure 9 show the representation of the SERVICE and PORT components. The
”EmailService” service contains one port, ”EmailServiceSoap” therefore the composition is
represented between them. The Location attribute indicates the service URL and is repre-
sented as a class attribute.

Figure 10 shows the representation of ”ValidateEmail” Web service using defined UML
extension.

6 Conclusion

In the last decade, many businesses and organizations have used different approaches to in-
teract with others taking the advantages and infrastructure of the Web. The Web services
are emerging to provide a systematic and extensible framework for application-to-application
interactions. The services are one of the most important issues in the scope of WIS develop-
ment but, the lack of a solid methodological base for the development of Web services, as well
as service-oriented applications give rise to the need of methods or modeling techniques that
can guarantee the quality in the development of this kind of applications.



Figure 7: Representation of the PORTYPE and OPERATION components

Figure 8: Representation of the BINDING component

Figure 9: Representation of the SERVICE and PORT components



Figure 10: UML representation of web service ”ValidateEmail”

In this paper we have presented a UML extension to represent WSDL. This work is inte-
grated in MIDAS, a model-driven methodological framework for the agile development of WIS
based on MDA. It defines PIMs and PSMs according to the aspects of content, hypertext and
behavior, and proposes to use the UML as unique notation to model both PIMs and PSMs.

For the definition of the UML extension, firstly we have described each of the components
of the WSDL metamodel using UML and then we have presented the design guidelines for
the extension definition. To validate the proposed extension we have developed different cases
study. In this paper we have showed a Web service for validating an email address represented
whit the defined UML extension.

Now we are working in the definition of the necessary extensions for the complete descrip-
tion of the service including the connection to specific protocols (SOAP, HTTP and MIME)
and the automatic generation of the service WSDL description from a UML diagram. Also we
are working in the integration of techniques for the Web services composition in MIDAS, such
as BPEL4WS. As future work we are going to implement the proposed models and mapping
rules in a CASE tool that supports MIDAS.

Acknowledgement

This research is carried out in the framework of following projects: EDAD (07T/0056/2003 1)
financed by Autonomous Community of Madrid and DAWIS financed in part by the Ministry of
Science and Technology of Spain (TIC 2002-04050-C02-01) and the Rey Juan Carlos University
(CG-2003-12).



References

[1] S. Ambler, Agile Model Driven Development is Good Enough. IEEE Software, 20(5):71-
73, 2003.

[2] C. Armstrong. Modeling Web Services with UML. In:
OMG Web Services Workshop 2002, Retrieved from:
http://www.omg.org/news/meetings/workshops/webservices 2002.htm, 2003.

[3] T. Bray et al. Extensible Markup Language (XML) 1.0 (Second Edition). W3C Recom-
mendation. Retrieved from: http://www.w3.org/TR/2000/REC-xml-20001006/, 2000.

[4] P. Cáceres et al. A MDA-Based Approach for Web Information System Development.
In: Workshop in Software Model Engineering in conjunction with UML Conference, San
Francisco, 2003.

[5] J. Conallen. Building Web Applications with UML. Addison Wesley, 2000.

[6] F. Curbera et al., Unraveling the Web services web: an introduction to SOAP, WSDL,
and UDDI. IEEE Internet Computing, 6(2):86-93, 2002.

[7] P. Fraternali, Tools and approaches for developing data-intensive Web applications: a
survey. ACM Computing Surveys, 31(3):227-263, 1999.

[8] S. Graham et al. Building Web Services with Java: Making Sense of XML, SOAP, WSDL
and UDDI. SAMS, 2002.

[9] N. Koch; H. Baumeister and L. Mandel, Extending UML to Model Navigation and Pre-
sentation in Web Applications. In: Modeling Web Applications, Workshop of the UML
2000, England, 2000.

[10] V. Kulkarni and S. Reddy, Separation of Concerns in Model-Driven Development. IEEE
Software, 20(5):64-69, 2003.

[11] E. Marcos; P. Cáceres and V. de Castro. An Approach for Navigation Model Construction
from the Use Case Model. In: The 16th Conference On Advanced Information Systems
Engineering. CAISE’04 FORUM, Accepted to be published.

[12] E. Marcos; B. Vela and J. M. Cavero. Extending UML for Object-Relational Database
Design. In: Fourth International Conference on the Unified Modelling Language, UML
2001, Toronto, LNCS 2185, p. 225-239, 2001.

[13] E. Marcos et al. MIDAS/DB: a Methodological Framework for Web Database Design. In:
DASWIS 2001, Yokohama, LNCS-2465, p. 227-238, 2002.

[14] OMG. OMG Model Driven Architecture. Miller, J., Mukerji, J. (eds.) 2001. Document
number ormsc/2001-07-01. Retrieved from: http://www.omg.com/mda, 2003

[15] OMG. OMG Unified Modeling Language Specification. Version 1.5. Retrieved from:
http://www.omg.org/technology/documents/formal/uml.htm, 2003.

[16] M.P. Papazoglou and D. Georgakopoulos, Serviced-Oriented Computing. Communica-
tions of ACM, 46(10):25-28, 2003.

[17] W. Retschitzegger and W. Schwinger. Towards Modeling of Data Web Applications - A
Requirement’s Perspective. In: Proceedings of the America’s Conference on Information
Systems, p. 149-155, 2000.



[18] J.J. Rodŕıguez; O. Dı́az and F. Ibánez. Moving Web Services Dependencies at the Front-
end. In: Engineering Information Systems in the Internet Context 2002, p. 221-237, 2002.

[19] B. Vela and E. Marcos. Extending UML to represent XML Schemas. In: The 15th
Conference On Advanced Information Systems Engineering. CAISE’03 FORUM, Kla-
genfurt/Velden, p. 16-20, 2003.

[20] W3C Web Services Description Language (WSDL) Version 1.2. W3C Working Draft 3
March 2003. Retrieved from: http://www.w3.org/TR/wsdl12/, 2003.

[21] W3C Web Services Description Language (WSDL) Version 1.2: Bindings. W3C Work-
ing Draft 3 March 2003. Retrieved from: http://www.w3.org/TR/2003/WD-wsdl12-
bindings-20030124/, 2003.

[22] W3C XML Schema Working Group. XML Schema Parts 0-2:[Primer,
Structures, Datatypes]. W3C Recommendation. Retrieved from:
http://www.w3.org/TR/xmlschema-0/, http://www.w3.org/TR/xmlschema-1/ and
http://www.w3.org/TR/xmlschema-2/, 2001.

[23] XMLSPY 5. Retrieved from: http://www.xmlspy.com/features wsdl.html, 2003.


