Web Components: A Comparison between
Web Services and Software Components

Luis Iribarne*

Abstract

The software engineering discipline is experiencing a quick consolidation in the applica-
tions development activities and the use of technologies and methodologies of web-based
programming. In the web services arena some oriented and based practices for the con-
struction of large scale software applications (i.e., distributed information systems) are
beginning to appear. The software development practices based on web services com-
position (many of them elaborated by third parts) involve similar problems to those in
the component-based development arena (more extended in the COTS components),
like components’ compatibility or interoperability. In the present work, it is carried
out a comparative study between the traditional software components description and
the web services description language (WSDL). The work also shows the limitations
of the current directory service specification (UDDI) to develop distributed software
applications by means of the composition of web services.

Keywords: Web services, software components, WSDL, UDDI, semantic specification,
protocol specification.

Resumen

La disciplina de la ingenieria del software estd experimentando una rapida consoli-
dacién de las actividades de desarrollo de aplicaciones software y del uso de tecnologias
y metodologias de programacion basadas en web. En el campo de los servicios web
ademds estdn apareciendo practicas (orientadas y basadas) para la construccién de
aplicaciones software a gran escala (como por ejemplo los sistemas de informacién dis-
tribuidos). Las précticas para el desarrollo de software basadas en la composicién
de servicios web (muchos de estos desarrollados por terceras partes) conllevan prob-
lemas similares a los que aparecen en el campo del desarrollo de software basado en
componentes (mds extendido en el campo de los componentes COTS), como la inter-
operabilidad o la compatibilidad de componentes. El presente trabajo lleva a cabo un
estudio comparativo entre la descripcién tradicional de los componentes software y el
lenguaje para la descripcién de servicio web (WSDL). El trabajo también identifica al-
gunas de las limitaciones que presenta la actual especificacién del servicio de directorio
(UDDI) para desarrollar aplicaciones software distribuidas mediante la composicién de
servicios webs.

Palabras clave: Servicios web, componentes software, WSDL, UDDI, especificacion
semdntica, especificacion de protocolos.

1 Introduction

Nowadays, large information systems and software applications are based on multi-tier ar-
chitectural client /server models making use of a great variety of technologies. These systems

*Department of Lenguajes y Computacién, University of Almerfa (Spain), Luis.Iribarne@ual.es

1 Organization CBD View

Software Component
Architecture

2 Web Service View

\

¥
WSDL

Specification +

Search and C
selection

Impl tali
ittt Third Parts
7 > R
woi | (BR__ _B
| B m | BB j B
o i - B
Omganization component = -_E e
WERELEE COTS Commercial Off-The-Shalf

Figure 1: A web service development view based on the traditional CBD view

are probably distributed and located in different geographical places, being communicated
with distributed models like CORBA, EJB and/or DCOM, and making use of important
rules, security methods and XML/XMI techniques for the intermediate representation of
the software components information. The construction of these systems requires the use of
traditional component-based development (CBD) practices and processes to build the sys-
tems from software components developed by third parts, known as commercial components
or COTS components. These practices, used on both the construction of “oriented” and
“based” systems in commercial components, are commonly identified by some important ac-
tivities in CBD like the components description, or the publication and location of software
components, usually carried out by trading services [19].

On the other hand, there has been a gradual consolidation of the web programming tech-
niques (like WSDL, SOAP and UDDI) due to the increase in the use of web services to build
(partial or totally) web-based information systems. Although these web services techniques
also enable the description (WSDL), publication and location (UDDI) of specific services
across Internet, they do not enable the programming of complex distributed information
systems based on web services, in which one or more services require the presence of some
other services to work with the composition of software components, just as it occurs in
CBD.

As Fig. 1 shows, software development practices based on web services composition could
involve similar problems to those present in COTS component-based development arena:
software architecture descriptions, search and selection processes (i.e., web services’ com-
patibility or interoperability), trading processes (more directly related to the publication and
location of objects activities), or software (web services — components) reuse descriptions,
among other practices.

The present work focuses on the analysis and comparison between the software descrip-
tion (specification) activity as well as the publication and location activity of the traditional
component-based software development activities with those similar activities used in web
services-based software development. This work also shows some limitations of these web
services activities when building software systems following traditional CBD practices.

The work is finally structured as follows. Sections 2 and 3 analyze the traditional ways of
describing software components and web services. Section 4 contains a study of the current
UDDI directory service specification for location and publication of web services. Section
5 analyzes some WSDL and UDDI shortcomings for the development of applications based
on web services. This work ends up with some conclusions and future works.

2 Software Components Description

The component-based development (CBD) is a paradigm to develop software, where all
the appliances, from the source code to the interface specification models, architectures and
business models, can be built by composing, adapting and installing together and following a
variety of configurations. Nevertheless, this would not be possible without a clear description
of the software components.

A software component requires some specification information for the users and develop-
ers of the module. In the software reuse context, a specification helps to determine whether
a module fulfils the needs of a new system. In the interoperation context, the specification
is used to determine if two modules are able to interoperate.

A software component C' can be characterized as: “C = (Atr + Oper + Even) + Beh +
(Prot * Esc) + Prop”. Attributes (Atr), operations or methods (Oper) and events (Fven)
are a part of the component interface, and they represent their syntactical level. The behav-
ior (Beh) of these operations represents the semantic level of the component. The protocols
(Prot) determine the interoperability of the component with other components and the type
of behavior that the component is going to have in different “settings” (E'sc) where it ex-
pects to be executed. Finally, Prop refers to non-functional “properties” of the component,
i.e., security, reliability or performance properties, among others. A component description
is:

a) Syntactic description. A software component can be identified by one or more
interfaces. An interface just contains syntactical information of a component’s input
and output operations with which interacts with other components. This kind of
interaction is known as “proactive control”, that is, the operations of a component are
activated by means of another component’s calls. Apart from the proactive control
(the usual way of calling an operation) there is the “reactive control”, which refers to
the component’s events, as the EJB (Enterprise JavaBeans) component model uses. In
a reactive control, a component can generate events to reply to requested operations;
afterwards other system components collect these requests and the call to the operation
is activated.

b) Semantic description. Nevertheless, not all the operations invocation sequences
are permitted. There exist operational restrictions that specify the possible operation
patterns. The construction of applications does not involve the use of the traditional
interface specifications. They only contain the name of the component signatures
and attributes [35, 36]. It is necessary to include a semantic specification of the
interfaces for the meaning of the operations and the description of their behavior
[32]. The information at the “semantic” level can be described by using formalisms
like the pre/post conditions, Larch [15], JML (Java Modeling Language) or JavaLarch
(ftp://ftp.cs.iastate.edu/pub/leavens/JML) [26], and OCL (Object Constraints
Language) [34]. Programming languages as Eiffel [28] and SPARK [4] enable to write
specifications of behavior using pre/post conditions inside the code. Other formalisms
for the semantic specification are the algebraic equations [17], the refinement calculus

[29], and other formal extensions of traditional object-oriented methods that are being
used on software components specification, like OOZE [2], VDM++ [14] and Object-Z
[16].

c) Protocol description (choreography). Besides the previous information, it is also
necessary another kind of semantic information concerning with the order in which
the component interface operations should be called. This semantic information is
known as interaction “protocols” (also named “choreography”). Depending on the
formalism, there exist different proposals to specify information of protocols: Petri
Nets [6], temporal logic [18, 25], finite state machines [35] or the m-calculus [11, 27].
There exist some other languages for the synchronization of components (another
way of referring to the protocols), like Object Calculus [24], Piccola [1] or ASDL
(Architectural Style Description Language) [30].

d) Quality and non-functional description. Another important issue is the quality
information of a component. This information is known in literature as attributes of
quality. An attribute of quality refers both to the service quality information (i.e., the
response maximum time, the average response and the precision) and the attributes
related to the functionality and non-functionality of a component: for example the
interoperability and the security for functional attributes, or the portability and the
efficiency for non-functional attributes, among others [20]. However, most of the qual-
ity attributes are related to the non-functional information. The non-functional infor-
mation is also called in the literature as non-functional restrictions (NFR) or “ilities”
[5, 31] (to refer to “reliability’, “portability”, “usability”, or “predictability” terms). In
the component literature there exist two classical references for the “ilities”: [3] and
[13]. The first one is an ISO 9126 standard, and the second one collects and classifies
more than 100 lities.

3 Web Services Description

A web service is an application published, located and invoked from a web place or local
network, which is based on Internet standards. It combines the better aspects of the web
and component-based programming, independently of the language, operating system, and
the component model in which it was implemented.

A more formal and extended definition is the one offered by the W3C Web Services
working group [33]: “A web service is a software system identified by a URI (a uniform
resources identifier) [8], whose public interfaces and links are defined and described in XML.
Its definition can be located by other software systems that can interact with the web service
in the pre-established way by its definition, using messages based on XML transmitted by
protocols of Internet”.

The XML and SOAP standards began to be used in web applications programming.
Nevertheless, IBM and Microsoft also began to define web services in XML notation. In
the early 2000, IBM developed the NASSL (Network Accessibility Service Specification Lan-
guage), an XML-based language for the web services interfaces definition that used the W3C
XML-Schemas notation to define the data types of the SOAP messages. On the other hand,
in April of 2000, Microsoft launched to the market the SCL (Service Contract Language)
and the XDR (XML Dates-Reduced). The first one is a language that also uses XML to
define web service interfaces, and the second one is a language for data types definition.
Few months later, Microsoft offered the SDL (Services Description Language) incorporated
to the Visual Studio .NET.

SOAP (May)
it thasen wic ceqTRIsoap12

Services Description Language)
Ariba http: e e, oral TRAwsd
Com-merceldne

Compaq Computet

Develophantor - Microsatt o

Hewfetl-Fackard uoDd 1.0 Ariba

o § e uoo! 3.0
A = Microsaft Mk e
Lotus - Arba uoD 2.0 . d
Mauroh = .| 1Bm | em

yE4on | | Memack & Microsaft
Usarland Software 12 DAL e Ll vy

SDL (Senvices Description Language)
Microsoft, Visual Studio .NET

SCL {Senvice Contract Language)
XDR (XML Data-Reduced)
Microsoft

NASSL (Network Accessibilty Servce Specification Language)

1BM

Figure 2: A roadmap through the web services

eSpeak HP O A develop Flatform for
ale-Speak Engine, AP to build serices:

SFS5 1, HPAL asi ge proftocd
1| ESV (E-Sendces Village), &-Senvdces directory.

Dynamic 1BM o 1B emdronment for web senvces. Uses WSOL. UDDI and SOAP.

o Busness U Some web serdces development utiities:

11 UDEH4J based on DD, and
b WEDLGEN that generates VWSOL fles.
MET Microsat U A part of the NET platform for web senvices. Inchudes:
Framesork 21 MET Entesprise Servers, sepver tools;
b} MET Buikding Block Servces, a web serdoe collection;
<) Visual Studio HET for web servces and applications:
d1 NET Framewark, the web sendces main kernel
O Integrates COMe, ASP, SOAP. WSDL and UDDI,
SunCHE Sun 1 SunCHE (Cpen Network Emdronment), supparts SOAP, WSDL and UDDI
U Basad on the Sun-hetscape Alllancs iPlanet server and the J3AL AP for JAX
Pack web services that indudes: JAXP (Java APY for XML Parsing), JAXE iJava
AFY for XML Binding), JAX-RPC (Java AFT for XML-based RPC), JAXM (Java APY
for XML Messaging), y JAXR (Java AP for XML Ragistries).

Figure 3: Platforms and tools to work on web services environments

Fortunately, IBM and Microsoft —together with Ariba— combined their efforts and
created a working group to elaborate a standard language, as a common objective for both
companies. As aresult, the WSDL (Web Services Definition Language) is generated: the first
language for web services definition. In March of 2001, WSDL was accepted as a recommen-
dation by the W3C. The WSDL specification can be found in http://www.w3.org/TR/wsdl.
Finally, this language uses the W3C base-data types definition. IBM offers WSDL support
at http://alphaworks.ibm.com/tech/webservicestoolkit. Microsoft offers support to
WSDL at http://msdn.microsoft.com/xml and at http://msdn.microsoft.com/net. As
a summary, Fig. 3 shows some of the more important platforms and tools used to build web
services environments.

Fig. 4 shows some of the forthcoming extensions of the web services on security, QoS
or transactions expecting to appear soon in the literature. However, this section will only
focus on the WSDL description.

A WSDL definition allows any web client to call the web service by means of program-
ming, without knowing anythig about the implementation details of the web service or what
platform or operating system it is working.

A WSDL document is composed of seven XML elements, although not all of them are
obligatory to define a web service. These elements are: (1) the types (<types>), which
are defined with a W3C’s schema (though other accessible private types can also be used

Client Application Server Application

%) %] 7)) (%]
= c +< =
5 g . S 5 g . £
o Q
£legg £1¢| 8 £l gl g £l 3|3
£/ 2/8/ %9/ 3 2|8 S 21819 3|28
< 04 = (o4 n o [< [v4 = (o4 n o [

SOAP SOAP

XML XML

TCP/IP
HTTP SMTP FTP HTTPS

Figure 4: Forthcoming extensions of the web services

from a name space); (2) the input and output messages (<message>); (3) the types of
port (<portType>), where the service interfaces are defined; (4) the interface operations
(<operation>); (5) the bindings (<binding>); (6) the ports (<port>); and (7) the service
(<service>). All these elements (and some more) are defined in the WSDL schema http:
//schemas.xmlsoap.org/wsdl/.

Fig. 5 shows a web service definition in the WSDL language. In this example, the web
service accepts an identifier (ID) to look for the user information in its associated database.
As a reply, the web service returns the name and the first name of the identified user.

The content of a WSDL document is represented in a structural way. Firstly, the web
service data types are defined (the input and output types). After that, the web service mes-
sages and ports types are described. Then, the web service connection point is established.
Finally, the web service with its ports and an Internet access way is established.

A web service is delimited by the definitions element and a name. Fig. 5 shows
the WSDL of the web service identificationService. The xlmns and targetNamespace
namespaces establish the Internet place of the web service (targetNamespace="http://
acme.solutions.es/identificationService.wsdl") and the Internet place of the SOAP
and WSDL document schemas. By default, these two namespaces reside respectively in
http://schemas.xmlsoap.org/wsdl/soap/ and http://schemas.xmlsoap.org/wsdl/.

The data types used by the service operations (only one, the operation identification)
are defined inside the XML <types> section (lines 6 to 21). Data types are defined in a
W3C schema document (<schema> section, lines 7 to 20). Types can be declared either
directly in the document (<types> section) or in a linked external document, for instance
(import location="http://acme.solutions.es/typesIdentification.xsd").

Firstly, the service messages are defined in two <message> sections (lines 22 and 25).
These messages are then used by the Identification operation (lines 30 and 31) in a port
type: portTypeldentification (line 28). Port types are the component interfaces. There-
fore, if the service had more than one interface, we would have to define as many port types
as existing interfaces. The port type shown in the example (portTypeIdentification) only
contains a single operation, but in case there was more than one operation, we would have
to declare as many <operation> sections as operations the port type (the interface) had.

1: <7?xml version="1.0"7>

2: <wsdl:definitions name="identificationService"

3: targetNamespace="http://acme.solutions.es/identificationService.wsdl"
4: xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

5: xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" >

6: <wsdl:types>

7: <xsd:schema targetNamespace="http://acme.solutions.es/identification.xsd"
8: xmlns:xsd="http://www.w3c.org/2000/10/XMLSchema">
9: <xsd:element name="identificationRequest" >

10: <xsd:complexType>

11: <xsd:element name="ID" type="xsd:float"/>

12: < /xsd:complexType>

13: < /xsd:element >

14: <xsd:element name="identificationResponse" >

15: <xsd:complexType>

16: <xsd:element name="Name" type="xsd:string" />

17: <xsd:element name="Firstname" type="xsd:string"/>

18: < /xsd:complexType>

19: < /xsd:element >

20: < /xsd:schema>

21: </wsdl:types>

22: <wsdl:message name="inputData">

23: <wsdl:part name="body" element="identificationRequest"/>

24: < /wsdl:message>

25: <wsdl:message name="outputData">

26: <part name="body" element="identificationResponse" />
27: < /wsdl:message>

28: <wsdl:portType name="portTypeldentification">

29: <wsdl:operation name="identification">
30: <wsdl:input message="inputData"/>
31: <wsdl:output message="outputData"/>
32: < /wsdl:operation>

33: < /wsdl:portType>
34: <wsdl:binding name="bindingldentification" type="portTypeldentification">

35: <wsdl:operation name="Identification">

36: <soap:operation soapAction="http://acme.solutions.es/identification"/>
37: <wsdl:input> <soap:Body use="literal"/> </wsdl:input>

38: <wsdl:output> <soap:Body use="literal"/> </wsdl:output>

39: < /wsdl:operation>

40: </wsdl:binding>

41: <wsdl:service name="identificationService" >

42: <wsdl:documentation>An identification service</wsdl:documentation>
43: <wsdl:port name="identification" binding="bindingldentification" >

44: <soap:address location="http://acme.solutions.es/servlet/control.1d" />
45: </wsdl:port>

46: </wsdl:service>
47: < /wsdl:definitions>

Figure 5: A WSDL web service definition example

<wsdl:binding name="bindingldentificacion" type="portTypeldentification">
<wsdl:operation name="identification">
<soap:operation soapAction="http://acme.solutions.es/identification">
<wsdl:input> <soap:Body use="literal"/> </wsdl:input>
<wsdl:output> <mime:part>
<mime:content part="outputData" type="text/html"/> </mime:part>
< /wsdl:operation>
< /wsdl:binding>

Figure 6: A MIME protocol example for a WSDL document

The <binding> section (lines 34 to 40) is related to the service protocols. Protocols are
related to the way in which the messages are sent in a SOAP, request and reply’. The input
and output structure of these messages are established in the <soap:Body> section. Here, the
use attribute takes the values "literal" or "encoded". Generally, the first one is used to
indicate that the messages (<input>, <output>) respect “literally” its definition, established
in the <message> sections. If the value is "encoded", it refers to the transportation protocol
to send or receive the messages (HTTP, SMTP, FTP). For example, Fig. 6 rewrites the
<binding> section for the “Identification service”, but now the outputs (<output> sections)
are supposed to be sent in a HTML page. A protocol MIME is used in the example specifying
the “mime” web page type (i.e., text/html).

The WSDL document concludes with the web service description (lines 41 to 46). A
service is defined by a name, one or more ports, and its location in the network where it can
be called. In the example, the service contains a single port called identification (line
43) and it is activated by a call to a “servlet” at http://acme.solutions.es/servlet/
control.Identification.

For further information about the WSDL specification, you can go through the W3C’s
web page (http://www.w3c.org/TR/wsdl) or in [12] and [22], among others.

4 Publising and Inquiring Services

Similar to the web service description language (the WSDL language), IBM and Microsoft
(together with Ariba) also created another working group to develop a specification function
for the publication and location of web services, UDDI (Universal Description, Discovery
and Integration). In September, 2000, this group created the first UDDI specification, and
nine months later, in June, 2001, created the version 2.0. Currently there exists the version
3.0, published at the end of June, 2002. The working group is maintained by the OASIS
organization at http://www.uddi.org, in which more than 200 organizations collaborate.
UDDI specification implementations quickly appeared in the market (see Fig. 7), but
it has not been so quick the appearance of one or more important known web places
which have the necessary infrastructure to support UDDI-based web services reposito-
ries. Other companies, as SalCentral (http://www.salcentral.com), BindingPoint (http:
//www.bindingpoint.com) or XMethods (http://www.xmethods.com), took advantage of
this gap creating important Internet-based web services repositories. However, these repos-
itories do not respect the UDDI model, and they are simply limited to lodging WSDL
documents. Nowadays, these web service repositories are a very important reference point

11t is necessary to clarify that the concept of protocol here does not coincide with the concept of protocol
in the components software arena. In this case, we are referring to the data transportation protocol. In
software components, a protocol refers to the order in which the messages are sent and called by other
components

Product Company _ Description

apeConnect Cape Web services framework. WS DL descriptions in Java, EJB and
Software CORBA. UDDI support.
GLUE Mind XML, SOAP. WSOL and UDDI standards to implement web services
environments
Sun Sun JavaTM Web Services Developer Pack implementing UDDI 2
TOHA XML, SDAP.WSOL and UDDI. Uses JAXR (UDDI). JAXM (SOAP)
and SAML [authentication and authorization).
Systinet WASP (Web Applications and Services Platform). Web services
development platform.
Fuitsy Web services platiorm based on J2EE and UDDI. Includes SOAF,
WSDL, RosettaNet and ebXML support
IBM UDDI implementaticn. WS5G (Web Services Gateway) is a middieware

that includes suppart to publish web services on WebSphere UDDI
Registry

16M UDD! implementation to bulld and maintain public and private web
services repositories

uno! Micrasoft UDD| implementation to build and maintain public_ private and

federated web services repositories.

Figure 7: Some UDDI implementations

Operator Publish Query

HP https://uddi.hp.com/publish http://uddi.hp.com/inquire

IBM https://uddi.ibm.com/ubr/publishapi http://uddi.ibm.com/ubr/inquiryapi

Microsoft https://uddi.microsoft.com/publish http://uddi.microsoft.com/inquiry

NTT https://www.uddi.ne.jp/ubr/publishapi http://wuw.uddi.ne.jp/br/inquiryapi

SAP https://uddi.sap.com/uddi/api/publish http://uddi.sap.com/uddi/api/inquire

Systinet https://www.systinet.com/wasp/uddi/publish http://www.systinet.com/wasp/uddi/inquiry
Some testing UDDI operators

IBM https://uddi.ibm.com/testregistry/publish http://uddi.ibm.com/testregistry/inquiry

Microsoft https://test.uddi.microsoft.com/publish http://test.uddi.microsoft.com/inquiry

SAP https://udditest.sap.com/UDDI/api/publish http://udditest.sap.com/UDDI/api/inquire

Table 1: Some UDDI Internet entry points

for developers of web component-based applications. Perhaps the most important one is the
SalCentral’s repositoy (http://www.salcentral.com), which lodges an interesting collec-
tion of web services developed by important companies.

At the end of the year 2002, we witnessed the consolidation of earlier web service repos-
itories implementations based on the UDDI model. The infrastructure that supports and
maintains a web service UDDI repository is named UBR (UDDI Business Registry). The
most important UBR repositories are exactly those maintained by the pioneering compa-
nies in the UDDI model: IBM and Microsoft. Those companies that maintain and offer an
Internet entry point to UBR repositories are called “UDDI operator node” (UON). Table 1
shows some important UON.

A UBR can be commonly maintained by one or more operators, each one supporting its
own repository. The UDDI model supports duplication of services to affiliated repositories
to maintain the consistency of the UBR. Therefore, a service published in the operator A,
can be searched later in the operator B, since its associated repository is actualized with
an automatic duplicate of that service published in the operator A. The duplicates are not
automatic, and the minimum updating time is 12 hours. As an example, IBM and Microsoft
maintain together an UBR.

UDDI is based on a “suscribe/publish/inquire” model to register and locate objects.
For web services publication, the UDDI model requires that the service supplier has to be
subscribed previously in the operator. It is not necessary to be subscribed for searches.
Table 1 contains two columns: the Internet entry point for publishing web services, and
that for searching web services. Besides, the UDDI publication entry points require a secure
connection https with an identification for the supplier. In the quering entry points, searches
can be directly done in the repository.

Development Publishes Production

UDDI repository UDDI repository

Testing Production
Environment Environment

UDDI OPERATOR

Figure 8: A development and production environment for a UDDI operator

Last rows in Table 1 show some entry points to UDDI operators repositories for testing
activities, called “development UDDI repositories”. This kind of repository helps the web
services developers in the construction and validation activities. Developers can register
their web service prototypes in the test repositories to validate their services, always in a
private way. When these services have been sufficiently tested and validated, the developer
publishes them in another repository called “production UDDI repository”. The services
published in that repository can be used by other developers or web services clients.

The UDDI repository’s information model basically stores information of those organi-
zations that publish web services in the repository. The WSDL documents are not stored
in the UDDI repository; they remain in a web place pointed by the published service. Con-
ceptually, a supplier company can publish or query services following some models:

a) White pages model. It contains basic contact information, for example the company’s
name, postal and e-mail addresses, personal contacts, telephone numbers, and a unique
identifier. Identifiers are alphabetic or numerical values that distinguish supplier com-
panies. The identifier is assigned to the supplier business when it is subscribed to the
UDDI operator.

b) Yellow pages model. It gathers the companies registered by categories, using the as-
signed identifier and the offered service types. This option uses a web service catalogue
when publishing and looking for services. This model is very useful for selective web
services searches into one or more selected categories, reducing the response times.

¢) Green pages model. It contains the services’ technical information for supplier com-
panies. This information is very useful for service clients to know the web service
connection and communication programming details. Therefore, this information de-
fines how to invoke the service (as we saw in the previous section). The green pages
normally include references to the WSDL documents, which contain information about
how to interact with the web service.

As it has already been advanced before, the UDDI specification requires that web services
supplier should be subscribed in that operator where it desires agreed. At the first time,
UDDI subscribes the supplier requesting its e-mail address and a password. Internally, UDDI
generates a unique identifier based on some key generation model, and creates a catalogue
(a space) for the supplier, with rights to modify, register and withdraw its web services.
This supplier company catalogue is a businessEntity document in which the supplier will
be able to include new web services, previously establishing a secure connection (https),
Table 1.

i _larg - Sirg | }
L& | [aeyName M =
H v E= .
ree— FE—] Bl \—?—‘ 1
_l—'- - 1.3 - 1

g g | |aeiym g

Figure 9: Modeling a UDDI register

1: <businessEntity businessKey="D2033110-3AAF-11D5-80DC-002035229C64" >

2: <name>Acme solutions S.A.</name>

3: <description xml:lang="en">An electronic supplier company< /description>

4: <contacts>

5: <contact>

6: <personName>Technical Director</personName>

7: <phone>+34-950-123456< /phone>

8: <email>manager@acmesol.es</email >

9: <address> <addressLine>Ctra. Sacramento s/n 04120</addressLine> </address>

10: < /contact>

11: </contacts>

12: <businessServices>

13: <businessService businessKey="D2033110-3AAF-11D5-80DC-002035229C64"

14: serviceKey="894B5100-3AAF-11D5-80DC-002035229C64" >

15: <name>Identification service</name>

16: <description xml:lang="en">An Internet identification service</description>

17: <categoryBag>

18: <keyedReference keyName="NAICS: e-commerce" keyValue="..." tModelKey="... "/>
19: <keyedReference keyName="NAICS: Database soft." keyValue="..." tModelKey="... "/>
20:

21: < /categoryBag>

22: <bindingTemplates>

23: <bindingTemplate bindingKey="6D8F8DF0-3AAF-11D5-80DC-002035229C64"

24: serviceKey="894B5100-3AAF-11D5-80DC-002035229C64" >

25: <accessPoint>http://acme.solutions.es/servlet/control.Identification < /accessPoint >
26: <tModellnstanceDetails>

27: <tModellnstancelnfo tModelKey="564B5113-1BAE-21A3-906E-122035229C75" />
28: </tModellnstanceDetails>

29: </bindingTemplate>

30:

31 < /bindingTemplates>

32: < /businessService>

33:

34: < /businessServices>

35: </businessEntity >

Figure 10: The UDDI register in XML

UDDI is basically composed of five types of information: (a) businessEntity, infor-
mation about the company; (b) businessService, information about the services that the
company offers; (c) bindingTemplate, technical information for a service; (d) tModel, infor-
mation about how to interact with the web service; (e) publisherAssertion, information
about the relation of the company with other ones. A UDDI register is an XML document
that includes these five types of information. Fig. 9 shows a meta-model of information
created from the UDDI 3.0 data structure specification [7]. Section businessEntity encap-
sulates the types, except the publisherAssertion section and the WSDL web services defi-
nitions. When the supplier company is subscribed in the UDDI operator, a businessEntity
document is created for it, including certain business information (such as its name or con-
tact address).

When the supplier company registers the first web service in the UDDI repository, a
businessServices section is created in the businessEntity, and a businessService sec-
tion will also be created for every published web service.

When the web service is stored in the UDDI repository, the service information is struc-
tured in the bindingTemplate technical sections and in a tModel XML external document.
A tModel document contains a link to the WSDL definition of the web service, which de-
scribes how the connections with the service operations are done. A tModel document is a
service type that can be reused by the supplier company to publish other web services.

Fig. 10 shows an XML UDDI document, which will be useful to analyze better this
meta-model and some concepts of the UDDI information model. The figure shows an XML
example that corresponds to a meta-model instance in Fig. 9. To analyse the UDDI infor-
mation model, we will jointly make reference to these two figures (9 and 10).

The diagram shows the businessEntity parts for an XML document. Each UML class
models a label of the XML document. The class attributes section has been used to model the
label attributes. The “~” symbol means an optional attribute, and the “+” symbol means a
mandatory attribute. For example, the businessEntity class has a required attribute called
businessKey, which represents the unique identifier of the supplier company assigned when
it made the subscription in the UDDI operator. This class models the businessEntity
label for a UDDI document (line 1, Fig. 10).

The businessEntity document contains: the name of the supplier company (line 2), a
company’s description (line 3) and contact data (lines 4 to 11). This information corresponds
with that on the “white pages”.

Web services are registered in the businessServices section (from lines 12 to 34). Inside
this, a businessService section is used to define each web service published by the supplier
company (lines 13 to 32). Two attributes are used for each service: one represents the unique
identifier of the supplier company, and the other one represents the unique identifier of the
published web service. For the latter, the identifier assignment for the published services is
similar to the identifier assignment for the supplier company (the businessKey identifier).

The services in the businessService section have got: a name (line 15), a service
description (line 16) and a classification information (from lines 17 to 21). This information
corresponds with that on the “yellow pages”.

Moreover, a businessService service section can contain technical information, col-
lected in the bindingTemplates section (from lines 22 to 31). This information corresponds
with the “green pages” information. The bindingTemplates section includes connection
information (line 25) and a link to the XML document tModel service type stored in the
UDDI operator’s repository (26-28). The tModelInstanceInfo label contains an attribute
with the identifier of the tModel service type.

There is a link to the WSDL definition inside a tModel document: a “.wsdl” file. It
contains the description about how the service operations should be invoked, and how these
return the data.

UDDI supports functional interfaces to interact with several client objects: (a) the object
that publishes web services (publisher), and (b) the object that looks for services (inquiry).
The requests and replies of the UDDI operations are achieved by using XML documents.
Table 2 shows the message types for the Publisher and Inquiry interfaces operations.

The publisher interface’s operations use some XML document messages to store, modify,
erase or eliminate white, yellow or green information pages. The inquiry interface’s oper-
ations also use XML documents to interrogate on those three pages types. A <find xxx>
document extracts a collection of documents that fulfil the restrictions of the inquiry docu-
ment. The returned collection is encapsulated in a global label, shown in the fourth column
in Table 2. The <get _xxx> documents extract some detailed information.

Table 3 shows some query examples to look for services information, together with the
results that these generate. Searches can be refined by applying new query documents on
those returned documents and limiting increasingly the space of the search. In the example,
the search starts with all the services published by the supplier company “Acme solutions
S.A.”. Then, on the returned result, it looks for a service called “Identification service”
published by that supplier. UDDI returns just one reference to the service. Finally, UDDI
obtains a more detailed description of the web service in the last query.

Publisher Inquiry
Request Reply Request Reply
<add_publisherAssertion> <dispositionReport> <find_binding> <bindingDetail>
<delete_binding> <dispositionReport > <find_business> <businessList>
<delete_business> <dispositionReport> <find_relatedBusinesses> <relatedBusinessesList>
<delete_publisherAssertions> <dispositionReport> <find_service> <serviceList>
<delete_service> <dispositionReport> <find_tModel> <tModelList>
<delete_tModel> <dispositionReport> <get_bindingDetail > <bindingDetail>
<discard_authToken> <dispositionReport> < get_businessDetail > <businessDetail >
<get_assertionStatusReport> <assertionStatusReport>| <get_serviceDetail> <serviceDetail >
<get_authToken> <authToken> <get_tModel> <tModelDetail>
<get_publisherAssertions> <publisherAssertions>
< get_registeredInfo> <registeredInfo>
<save_binding> <bindingDetail>
<save_business> <businessDetail >
<save_service> <serviceDetail>
<save_tModel> <tModelDetail>
<set_publisherAssertions> <publisherAssertions>

Table 2: Publication and locating messages for the UDDI repository

Due to the extension of the UDDI 3.0 specification report (only the data structures
section occupies more than 300 pages) just the most significant document labels have been
described in this paper. A fairly detailed description for the UDDI information model can
be found in [7, 9, 10].

5 WSDL and UDDI Shortcomings

The shortcomings have been detected based on the experience obtained after analyzing the
UDDI 3.0 specification [7] and some UDDI industrial implementations, such as the IBM
UDDI4J API (http://www-124.ibm.com/developerworks/oss/uddi4j), and the UBR of
Microsoft (http://uddi.ibm.com), IBM (http://uddi.ibm.com) and HP (http://uddi.
hp.com). There are some other non-UDDI web services repositories which have been ana-
lyzed too, such as the SalCentral (http://www.salcentral.com) and the XMethods (http:
//www .xmethods . com) repositories.

WSDL is a very useful language for the specification of simple components working across
the Internet; these components are called web services. These services have generally been
encapsulated by web pages from which the “developer” figure appears by Internet-based
applications. This kind of software developer needs to know certain implementation details
about the web service, usually described by means of its interfaces: for example the way in
which the operations are called, or the way in which the data or the service’s use restrictions
are returned, among other interface implementation details.

In the last few years, WSDL has been established as a standard XML-based language for
web services specification. As Section 3 describes, a WSDL document is composed of seven
XML elements to define service interface (or interfaces) details, i.e., the input and output
data type of the operation signatures, or the way in which the operations are called and
returned, and connection details. Nevertheless, the WSDL specification does not take into
account the following aspects:

(a) Protocols. WSDL uses the protocol term to refer to the transfer protocol (HTTP, FTP,
SMTP). Nevertheless, the WSDL XML schema does not deal with a notation to refer
to the protocol concept (or choreography) in the sense of knowing the order in which
the input and output operations are called. Therefore, the language should enable

Query 1: searches all the services for a supplier company

1: <find_business>
2: <name>Acme solutions S.A.</name>
3: </find_business>

Return 1: the service list

4: <businessList>

5 <businessInfos>

6 <businessInfo businessKey="D2033110-3AAF-11D5-80DC-002035229C64" >
7 <name>Acme solutions S.A.</name>

8 <description xml:lang="en">An electronic supplier bussiness</description>
9: <servicelnfos>

10: <servicelnfo businessKey="D2033110-3AAF-11D5-80DC-002035229C64"
11: serviceKey="894B5100-3AAF-11D5-80DC-002035229C64" >
12: <name>Identification service</name>

13: < /servicelnfo>

14:

15: < /servicelnfos>

16: < /businessInfo>

17: <businessInfos>
18: < /businessList>

Query 2: now it searches a service in the service list

19: <find_service businessKey="D2033110-3AAF-11D5-80DC-002035229C64" >
20: <name>Identification service</name>
21: </find_service>

Return 2: a reference to the found service

22: <serviceList>
23: <servicelnfos>

24: <servicelnfo businessKey="D2033110-3AAF-11D5-80DC-002035229C64"
25: serviceKey="894B5100-3AAF-11D5-80DC-002035229C64" >
26: <name>Identification service</name>

27: < /servicelnfo>

28: < /servicelnfos>
29: </serviceList>

Query 3: it searches more detailed information of the service

30: <get_serviceDetail>
31: <serviceKey>894B5100-3AAF-11D5-80DC-002035229C64 < /serviceKey >
32: </get_serviceDetail>

Return 3: the information of the service

33: <serviceDetail>

34: <businessService businessKey="D2033110-3AAF-11D5-80DC-002035229C64" >

35: Lines 13 to 32 in Fig. 10
36: < /businessService>
37: </serviceDetail>

Table 3: Several query examples in the UDDI notation

to include directly (in XML) or indirectly (an external link) a notation to describe
protocols; for example, a protocol described in an SDL or w-calculus notation.

(b) Behavior. Tt is necessary that the language also enables a semantic behavior description
for the operations (pre/post conditions), and not only a syntactical definition for the
signatures. Therefore, the language should enable again to include directly (in XML)
or indirectly (an external link) semantics notations; for example, a definition in Larch.

(¢) Non-functional information. Finally, it is also necessary that the language can use
a notation to define non-functional properties, apart from the functional information
(syntax, semantics and protocols of the interfaces) and the technical information of
the service. Again, it should enable to include directly or indirectly this kind of
information; for example, the properties described in the ODP way: name, type,
value.

The WSDL shortcomings also result in the UDDI model, and basically affect to the
searching operations in the repository. Therefore, as a first UDDI limitation, the query
operations are only held to technical aspects of a web services supplier company, to technical
aspects of their web services, and also to aspects of location, connection and communication
of web service operations. Nevertheless, these operations do not allow searches for: (a) the
interaction protocols of the operations, (b) the behavior of the operations; and (c) the non-
functional information.

Secondly, although the UDDI specification enables the affiliation (publisherAssertion),
it does not really take into account the federation of UDDI repositories in the same way as the
ODP trading service standard [21]. The affiliation of UDDI operators enables to maintain the
consistency of the information for a single virtual UBR, (UDDI Business Registry) repository.
Everytime a service is published in the UDDI operator’s repository, it is duplicated to those
affiliated repositories. Nevertheless, a subsidiary operator can be associated to more than
one UBR, but this can lead to certain problems.

For example, let us suppose the existence of two UDDI business registry (UBR): UBR1
and UBR2. Let us also suppose that operators A and B are affiliated to UBR 1, and operators
B and C to UBR2. Operator B is affiliated to both UBRs. According to this, a service
publication in UBR1 does not imply that the service is also published in UBR2, by means
of a duplicate (and vice versa); even if operator B is as a subsidiary in both UBRs.

Apart from this, the propagation of queries between UBR operators is not possible either
(the query is achieved on the operator, not on the UBR). Only a duplicate of the published
service is propagated toward its affiliated operators. Carrying on with the example, let us
now suppose that services publication is more frequent on operator UBR1 than operator
UBRZ2. Let us also suppose that a web services client X can inquire indistinctly on operator
A or B, even if the client does not know that these two operators are affiliated, and (in
principle) they should have the same registered services. Nevertheless, queries achieved by
another client Y on operator C are only limited to the repository of that operator, and they
are not propagated to operator B, which is supposed to have more information.

In this sense, UDDI is a useful and complete directory service, but not a trading service,
such as it could be wished on the UDDI model. A trading service can be considered as
an advanced directory service that permits searches based on attributes, i.e., attributes of
quality [23].

6 Conclusions and Future Work

Similar to the earlier software components definitions, described as a unique interface, cur-
rently the web services descriptions encapsulate the functionality of an individual object that
actives itself and responds via web. Nevertheless, the component models recently support
the definition of multiple provided and required interfaces for a software component. On the
other hand, the component community seems to know what kind of information is needed in
order to describe a software component (syntactic, semantics, protocols and non-functional
information) to develop systems by means of the composition of multiple components. The
web services should also take into account this kind of information which is useful for the
engineers to build their systems from web services collections. Moreover, they are supposed
to be able to interoperate and/or to be developed by third parts.

However, in contrast to the software components where the way of collecting this com-
ponent information does not seem to be extended, in the web services arena there exists
an extended XML-based language to describe web services, such as the language WSDL.
Nevertheless, as we previously studied in this work, it does not seem very appropriate to
use either the current web services description language (WSDL) or the directory service
specification to describe, publish and locate web services (UDDI) in traditional component-
based development processes, that is, by means of the composition of several software parts.
In a description perspective, a possible solution could be to extend the WSDL schemas in-
cluding those XML tags in order to approach software components (i.e., syntactic, semantic,
protocol and non-functional descriptions), similar to the COTScomponent templates [19].

Although this paper does not offer a solution in this sense, it analyses a study of the
WSDL and UDDI techniques for web services-based development, and it identifies a problem
in the conception of these techniques for the building of complex systems from multiple web
services.

As a future work, the current WSDL and UDDI notation should be extended so that
they can really be used in CBD processes. It would also be interesting to observe the fed-
eration between those WSDL repositories that respect the UDDI specification and those
that do not, similar to the Salcentral repositories implementing privates WSDL repositories.
Finally, since a web services market is likely to appear soon, it would also be interesting to
approach web services and COTS components, considering the web services in the commer-
cial components trading services, such as the COTStrader service [19].

Acknowledgments

This work has been partially supported by Spanish CICYT Projects TIC2002-04309-C02-02
and TIC2002-03968. I would like to thank Antonio Vallecillo, from the University of Malaga
(Spain).

References

[1] F. Acherman, M. Lumpe, J. Schneider, and O. Nierstrasz. Piccola—A Small Com-
position Language, 1999. University of Berne. http://www.iam.unibe.ch/~scg/
Research/Piccola/.

[2] A. Alencar and J. Goguen. OOZE. In S. Stepney, R. Barden, and D. Cooper, editors,
Object Orientation in Z, pages 158-183. Springer-Verlag: Cambridge CB2 1LQ, UK,
1992. Workshops in Computing.

[3]

M. Azuma. Square: The next generation of the ISO/IEC 9126 and 14598 international
standards series on software product quality. In ESCOM (European Software Control
and Metrics conference), pages 337-346, April 2001.

J. Barnes. High Integrity Ada: the SPARK Approach. Addison-Wesley, 1997. ISBN:
0-20-11751-77.

L. Bass, P.C. Clements, and R. Kazman. Software Architecture in Practice. Addison-
Wesley, 1998. ISBN: 0-201-19930-0.

R. Bastide, O. Sy, and P. Palanque. Formal Specification and Prototyping of CORBA
Systems. In FECOOP’99, number 1628 in LNCS, pages 474-494. Springer-Verlag, 1999.

T. Bellwood, L. Clement, D. Ehnebuske, A. Hately, M. Hondo, Y. L. Husband,
K. Januszewski, S. Lee, B. McKee, J. Munter, and C. Riegen. UDDI Version 3.0,
July 2002. http://www.uddi.org/pubs/uddi-v3.00-published-20020719.pdf.

T. Berners-Lee, R. Fielding, and L. Masinter. Uniform Resource Identifiers (URI):
Generic Syntax. Technical Report RFC 2396, IETF, August 1998. http://www.ietf.
org/rfc/rfc2396.txt.

T. Boubez, M. Hondo, C. Kurt, J. Rodriguez, and D. Rogers. UDDI Data Structure
Reference V1.0, 28 de Junio 2002. http://www.uddi.org/pubs/DataStructure-Vi.
00-Published-20020628.pdf.

T. Boubez, M. Hondo, C. Kurt, J. Rodriguez, and D. Rogers. UDDI Program-
mer’s API 1.0, 28 de Junio 2002. http://www.uddi.org/pubs/ProgrammersAPI-V1i.
01-Published-20020628.pdf.

C. Canal, L. Fuentes, E. Pimentel, J. M. Troya, and A. Vallecillo. Adding roles to
CORBA objects. IEEE Trans. Softw. Eng., 29(3):242-260, 2003.

P. Cauldwell, R. Chawla, V. Chopra, G. Damschen, C. Dix, T. Hong, F. Norton,
U. Ogbuji, G. Olander, M. A. Richman, K. Saunders, and Z. Zaev. Professional XML
Web Services. Wrox Press Ltd, 2001. ISBN: 1-861005-09-1.

L. Chung, B.A. Nixon, E. Yu, and J. Mylopoulos. Non-Functional Requirements in
Software Engineering. Kluwer Academic Publishers, 1999. ISBN: 07-923-86663.

E. H. Darr and N. Plat. VDM++ Language Reference Manual, 1994. Utrecht, The
Netherlands: Cap Volmac.

K.K. Dhara and G.T. Leavens. Forcing Behavioral Subtyping Through Specification
Inheritance. In 18th International Conference on Software Engineering (ICSE-18),
pages 258-267, Berlin, Germany, 1996. IEEE Press.

R. Duke, G. Rose, and G. Smith. Object-Z: A Specification Language Advocated for
the Description of Standards. Computer Standards and Interfaces, 17:511-533, 1995.

J. Goguen, D. Nguyen, J. Meseguer, Luqi, D. Zhang, and V. Berzins. Software Com-
ponent Search. Journal of Systems Integration, 6:93-134, September 1996.

J. Han. Semantic and Usage Packaging for Software Components. In Antoncio Valle-
cillo, Juan Hernandez, and Jos M. Troya, editors, Object Interoperability. ECOOP’99
Workshop on Object Interoperability, pages 2534, Lisbon, Portugal, 1999.

[19]

[20]

[21]

22]
(23]

24]

32]

[33]

L. Iribarne, J. M. Troya, and A. Vallecillo. A Trading Service for COTS Components.
The Computer Journal, 47(3), may 2004.

ISO/TEC-9126. Information Technology — Software Product Evaluation — Quality Char-
acteristics and Guidelines for their Use, 1991. International Standard ISO/IEC 9126.

ISO/IEC-ITU/T. Information Technology — Open Distributed Processing — Trading
function: Specification, August 1997. ISO/TEC 13235-1, UIT-T X.950.

T. Jewell and D. Chappell. Java Web Services. O'Reilly, 2002. ISBN: 0-596-00269-6.

L. Kutvonen. Achieving Interoperability through ODP Trading function. In Second
International Symposium on Autonomous Decentralized systems (ISADS’95), pages 63—
69, Arizona, April 1995. IEEE Computer Society.

K. Lano, J. Bicarregui, T. Maibaum, and J. Fiadeiro. Composition of Reactive Sys-
tems Components. In G.T. Leavens and M. Sitaraman, editors, Proceedings of the 1st
Workshop on Component-Based Systems. European Software Engineering Conference
(ESEC) and ACM SIGSOFT Symposium on the Foundations of Software Engineering
(FSE), 1997. http://www.cs.iastate.edu/~leavens/FoCBS/FoCBS.html.

D. Lea and J. Marlowe. Interface-Based Protocol Specification of Open Systems Us-
ing PSL. In Proc. of the 9th FEuropean Conference on Object-Oriented Programming
(ECOOP’95), pages 374-398, Aarhus, Ddnemark, 1995.

G. T. Leavens, L. Baker, and C. Ruby. Behavioral Specifications of Businesses and
Systems, chapter JML: A Notation for Detail Desing. Kluwer Academic, 1999.

M. Lumpe, J. Schneider, O. Nierstrasz, and F. Achermann. Towards a Formal Com-
position Language. In G.T. Leavens and M. Sitaraman, editors, Proceedings of the 1st
Workshop on Component-Based Systems, European Software Engineering Conference
(ESEC) and ACM SIGSOFT Symposium on the Foundations of Software Engineering
(FSE), September 1997. http://www.cs.iastate.edu/~1leavens/FoCBS/FoCBS.html.

B. Meyer. Fiffel: The Language. Prentice Hall, 1992. ISBN: 0-13-247925-7.

A. Mikhajlova. Ensuring Correctness of Object and Component Systems. PhD thesis,
October 1999.

R.A. Riemenschneider and V. Stavridou. The Role of Architecture Description Lan-
guages in Component-Based Development: The SRI Perspective. In 21st Interna-
tional Conference on Software Engineering, May 1999. http://www.sei.cmu.edu/
cbs/icse99/papers/42/42.htm.

C. Thompson. Workshop on Compositional Software Architectures: Workshop Re-
port. January 1998. Monterey, Clifornia. http://www.objs.com/workshops/ws9801/
report.html.

A. Vallecillo, J. Hernédndez, and J. M. Troya. Object Interoperability. In Object-
Oriented Technology: ECOOP’99 Workshop Reader, number 1743 in LNCS, pages 1-21.
Springer-Verlag, 1999.

W3C-WebServices. Web Services Glosary, November 2002. W3C Working Draft. http:
//www.w3.org/TR/2002/WD-ws-gloss-20021114/.

[34] J. Warmer and A. Kleppe. The Object Constraint Language — Precise Modeling with
UML. Addison-Wesley, 1998. ISBN: 0-201-37940-6.

[35] D. M. Yellin and R. E. Strom. Protocol Specifications and Component Adaptors. ACM
Transactions on Programming Languages and Systems, 19(2):292-333, Mar. 1997.

[36] A. M. Zaremski and J. M. Wing. Specification Matching of Software Components.
ACM Trans. on Software Engineering and Methodology, 6(4):333-369, October 1997.

