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Abstract

In this paper we consider the process of defining natural functions by the operation
of infinite limit: F (x̄) = limy→∞,y∈A f(x̄, y) (also limes inferior and limes superior are
taken into account). But two restrictions are assumed: the given natural function f
has a graph belonging to some stage of an arithmetical hierarchy, the index of a limit
runs only through a given arithmetical subset A of natural numbers.

We investigate the arithmetical class of the graph of the function F , where the
respective classes of the graph of f and the set A are known. The corollary for the
Turing degrees of F is formulated.
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1 Introduction

The operation of infinte limits (including limes inferior and limes superior) is a natural
operation on functions. The main field for the limit operation is in the mathematical analysis
(for the real functions). But also the case of natural functions is considered in mathematics
and computer science (for example the important Shoenfield’s Limit Lemma [11]).

In this paper we use the limit operation as an ’ideal’ component of computing systems.
Some existing models of computation have a strong connection with the mathematical anal-
ysis and its tools. The best example is Shannon’s General Purpose Analog Computer [10].

The General Purpose Analog Computer (GPAC) is a computer whose computation
evolves in continuous time. The outputs are generated from the inputs by means of a
dependence defined by a finite directed graph (not necessarily acyclic) where each node is
one of the following boxes: integrator : a two-input, one-output unit with a setting for initial
condition, if the inputs are unary functions u, v, then the output is the Riemann-Stieljes
integral λt.

∫ t
t0
u(x)dv(x) + a, where a and t0 are real constants defined by the initial set-

tings of the integrator; constant multiplier : a one-input, one-output unit associated to a
real number, if u is the input of a constant multiplier associated to the real number k, then
the output is ku; adder : a two-input, one-output unit, if u and v are the inputs, then the
output is u + v; multiplier : a two-input, one-output unit, if u and v are the inputs, then
the output is uv; constant function: a zero-input, one-output unit, the value of the output
is always 1.

Rubel in his papers [7, 8] extended this model by an introduction of new boxes to define
Extended Analog Computer in the real realm. This model is similar to the GPAC but it
allows, in addition, other types of units, e.g. units that solve boundary value problems
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(here we allow several independent variables because Rubel does not seek any equivalence
with existing models) and infinite limits. The EAC permits the operations of ordinary
analysis, except the unrestricted taking of limits. To avoid generating too many functions in
this model, limits have some restrictions: indices can go only through some subsets of real
numbers. The new units add an extended computational power relatively to the GPAC. For
example, the EAC can solve the Dirichlet problem for Laplace’s equation on a disc and can
generate the Γ function (it is known that the GPAC cannot solve these problems [7]). It is
not known whether it exists a physical version of the EAC.

For natural functions and relations the main result for infinite limits is Shoenfield’s
Limit Lemma. This characterizes the functions computable from the halting problem as
those functions of the form limn→∞ g(x̄, n) where g is a recursive function. This lemma
is a fundamental tool for studying the degrees below 0′. Additionaly, the functions from
the class ∆0

2 given in the Limit Lemma are considered as especially useful in modeling of
learning processes (see [4]).

Let us recall some facts about infinite limits. For functions defined on metric space
S we have: if x0 ∈ S and O(x0, ε) is a neighbourhood of x0, then we define (see [3])
lim supx→x0

f(x) = limε→0[supx∈O(x0,ε) f(x)] and lim infx→x0 f(x) = limε→0[infx∈O(x0,ε) f(x)].
In the infinity we have then

lim sup
y→∞

f(x) = lim
y→∞

[sup
x>y

f(x)],

lim inf
y→∞

f(x) = lim
y→∞

[ inf
x>y

f(x)].

Because λy.[supx>y f(x)] is a nonincreasing function and λy.[infx>y f(x)] is a nondecreasing
function, thus
limy→∞[supx>y f(x)] = infy[supx>y f(x)],
limy→∞[infx>y f(x)] = supy[infx>y f(x)]. If limx→∞ f(x) exists, then
lim infx→∞ f(x) = limx→∞ f(x) = lim supx→∞ f(x).

Here we focus our interest on natural functions. But in an analog way to Rubel[7] we
restrict the indices of limits. Let f : Nk×N→ N be a given function and A ⊂ N a given set.
Now we can consider the functions F, F ′, F ′′ defined in the following way (x̄ ∈ Nk, y ∈ N):

F (x̄) = lim
y∈A,y→∞

f(x̄, y),

F ′(x̄) = lim inf
y∈A,y→∞

f(x̄, y),

F ′′(x̄) = lim sup
y∈A,y→∞

f(x̄, y).

The index y of the limits is going through the set A - not necessarily through all natural
numbers. Moreover, the set A must be arithmetical, i.e. it must belong to Σ0

n or Π0
n for

some n ∈ N. Also the relation {(x̄, y, z) : f(x̄, y) = z} must be arithmetical (the function
f must have an arithmetical graph). It means that a membership in the set A and in the
mentioned above relation can be decided by computable procedures extended by the use of
quantifiers.

This restrictions can be viewed as a way to build the constructive (in some sense ’com-
putable’) limit operation. Namely, in this version of infinite limits we would use the pre-
viously constructed functions and sets (by their characteristic functions) starting from the
recursive functions and sets to define the new ones.



Let us add that models of computation with infinite limits are more powerful than stan-
dard ones. Classical undecidable problems (like the halting problem) in such models are
decidable. Moreover, functions computable in these models can be useful in proof debug-
ging. The standard objection to such extensions of computable systems is their unphysical
character. However, we know that some results for Newtonian physics [14] or general rela-
tivity [5] may be used to harness devices employing some kind of infinite limits.

2 Preliminaries

In this section we recall the fundamental notions and denotations which are used in this
paper.

A Turing machine can be given by the following description. It consists of an infinite
tape for storing the input, output, and scratch working, and a finite set of internal states.
All elements on a tape are strings. Without any loss of generality, we can choose some
alphabet for these strings; the binary alphabet is a practical choice.

The machine works in steps. In one step it scans the symbol from the current position of
the tape (under the head of the machine), changes this symbol according to a current state
of the machine and moves the position of the tape to the left or right with a transformation
of state. Some states are distinguished as final, as soon as the machine reaches one of them,
it stops. Our Turing machine model obeys to the following rules (classical constraints): (a)
input is finite and (b) output is finite. Turing machines defined in the above way can be
used to compute natural functions (for example with the coding of arguments and results
in the binary alphabet).

A Turing machine with an oracle A where A is a subset of some cartesian product
Nk, k ≥ 1 (A can be treated as a relation), is such a machine which can in any step decide
whether or not the current content of the tape (interpreted in a given coding as a vector of
numbers) is in the set A.

For a function g : Nn → N its graph will be denoted as Gg = {(x̄, y) : g(x̄) = y}.
We will use an arithmetical hierarchy to classify subsets of N and natural functions by
their graphs. This infinite hierarchy consists of the classes Σ0

0,Π
0
0, . . . ,Σ

0
i ,Π

0
i , . . .. Each

class Σ0
i ,Π

0
i , i ≥ 0 is a family of relations (including sets) on some cartesian product of the

set of natural numbers. The method of a construction is inductive: the classes Σ0
0 = Π0

0

contain recursive relations (i.e. these ones with characteristic functions computable by
Turing machines); the class Σ0

n+1 includes only such elements S for which the relation S
is equivalent to some relation ∃tP , where P is in Π0

n; the class Π0
n+1 includes only such

elements for which the relation S is equivalent to some relation ∀tP , where P is in Σ0
n. By

the ∆0
n we denote Σ0

n ∩ Π0
n. The artithmetical hierarchy satisfies the strict inclusions of its

levels: Σ0
n ⊂ Π0

n+1,Π
0
n ⊂ Σ0

n+1, n ≥ 0.
The importance of the arithmetical hierarchy is connected with many fields. It can be

observed as a kind of formal description of definiability (see [9]). Its classes can be used to
classify ’a complexity’ of mathematical notions (e.g. the definition of a limit of sequences
is of Π0

3 class). From the point of view of computability theory we can see the arithmetical
hierarchy as the levels of natural functions (given by their graphs), which are different in
quantity of infinite ’while’ loops necessary to their computation. Also linguistic problems of
computer science can be expressed in terms of this hierarchy. The most known example is
the one of the classes of recursive (Σ0

0) and recursive enumerable (Σ0
1) languages (compare

[6]).
The other important method to classify unsolvable problems is given by the notions of a

jump and a reduction. The jump A′ ⊂ N of the A ⊂ N is defined by A′ = {n : fAn (n)defined},



where fAn is the function computed by the n-th Turing machine with an oracle A (with
respect to some given effective enumeration of all Turing machines with an oracle A). The
i-th jump of A is defined inductively: A(0) = A,A(i+1) = (A(i))′.

We say that a function f is Turing reducible to a function g, when f can be computed
by some Turing machine with an oracle Gg. We denote by f ≤T g that f is Turing reducible
to g. Because ≤T is a reflexive and transitive relation, so the relation f ≡T g which holds
iff f ≤T g and g ≤T f is an equivalence relation. The Turing degree is an equivalence class
of the natural functions with respect to the relation of mutual Turing reducidablity (Turing
equivalence) ≡T . These classes are partially ordered by the relation induced from ≤T .

The above notions (Turing reducibility, Turing equivalence, Turing classes) can be used
for sets and relations. In this meaning it is sufficient to think about Turing machines which
compute characteristic functions of aprioprate sets and relations. In this context it is used
the following notation: 0(0) is the Turing degree which contains all the recursive sets with
its representative ∅ and by 0(i) the Turing degree with its representative ∅(i).

We can say that, intuitively, belonging to the higher Turing degree is connected with
more complex content of a set and its elements have more difficult computation as an
effect. Turing degrees are important objects in computer science. They are analysed from
an algebraic point of view (a structure of degrees as a partially ordered set, its density,
linearity, etc) and in a computational context (problems of undecidabilty). The concept of
Turing degree yields an extension of universal computation to classical unsolvable problems
and allows to classify problems by their computational (un)decidability. Also as a tool
Turing degrees have the imporatant power, for example in information theory randomness
of sequences can be measured by using reducibilities (see [1]).

In the next sections of the paper we will use some operations on the families of sets and
relations. For this purpose we will use some extensions of standard operations on sets and
relations [13]. Let us define ¬α = {A : Nk − A ∈ α}, where α is a family of subsets of Nk

(α ⊂ 2N
k

). In the similiar manner we can define ∃α = {A′ = {x̄ : ∃y(x̄, y) ∈ A} : A ∈ α},
α ∨ β = {A ∪ B : A ∈ α,B ∈ β} where α, β ⊂ 2N

k

. As usual for α, β ⊂ 2N
k

we define
additionally ∀α = ¬∃¬α, α ∧ β = ¬(¬α ∨ ¬β), α⇒ β = ¬α ∨ β.

3 Limes inferior and limes superior

In this section we will present results useful in further considerations. We begin with an
analysis of the operations of limes inferior and limes superior on natural functions.

First we will create the function F : Nk → N by limes inferior which indices going
through some arithmetical set A for a given function f : Nk+1 → N such that its graph
Gf = {(x̄, i, y) : y = f(x̄, i)} is an arithmetical set. We start with a lemma which shows the
influence of the operation of infimum on arithmetical relations and sets.

Lemma 3.1 Let RA,fI (n, x̄, t) be a a relation in Nk+2 defined as below

RA,fI (n, x̄, t) ⇐⇒ inf
i≥n,i∈A

f(x̄, i) = t.

Then for A ∈ Σ0
m ∪Π0

m and Gf ∈ Σ0
n ∪Π0

n we have

RA,fI ∈ Π0
max (m,n)+ρ(A,Gf )+1



where

ρ(A,Gf ) =





0 (max (m,n) = m ∧A ∈ Σ0
m −Π0

m)
∨(max (m,n) = n ∧Gf ∈ Σ0

n −Π0
n)

∨(m = n ∧A ∈ Σ0
m −Π0

m ∧Gf ∈ Σ0
n −Π0n)

1 otherwise

Proof. To simplify the proof we use the fact that the relation RA,fI is satisfied for n, x̄, t iff t
is the greatest lower bound for f(x̄, 0), . . . , f(x̄, i), . . . where all the indices i of this sequence
should be in A. So if lbA,f (n, x̄, t) denotes that t is the lower bound of the function f(x̄, j)
for j ∈ A, j ≥ n then

RA,fI (n, x̄, t) ⇐⇒ lbA,f (n, x̄, t) ∧ (∀s)lbA,f (n, x̄, s)⇒ s ≤ t.
Precisely the relation lbA,f used above is defined as follows:

lbA,f (n, x̄, t) ⇐⇒ (∀j ≥ n, j ∈ A)f(x̄, j) ≥ t.
Now we transform the relation lbA,f in the more convenient form in this case:

lbA,f (n, x̄, t) ⇐⇒ ∀j[(j ≥ n ∧ j ∈ A)⇒ f(x̄, j) ≥ t]
⇐⇒ ∀j[¬(j ≥ n ∧ j ∈ A) ∨ f(x̄, j) ≥ t]

⇐⇒ ∀j[¬(j ≥ n ∧ j ∈ A) ∨ ∀y(Gf (x̄, j, y)⇒ y ≥ t)].
Then for A treated as a relation and ≥ represented by the relation R≥ we obtain:

lbA,f (n, x̄, t) ⇐⇒ ∀j[¬R≥(j, n) ∨ ¬A(j) ∨ ∀y(¬Gf (x̄, j, y) ∨R≥(y, t))].

Now we want to find the class X of the arithmetical hierarchy to which the relation
lbA,f belongs in the case when classes of the relations Gf and A are known: Gf ∈ Σ0

n ∪Π0
n,

A ∈ Σ0
m ∪Π0

m. ¿From the above definition of lbA,f it is clear that:

X ⊂ ∀[¬{R≥} ∨ ¬A ∨ ∀(¬G ∨ {R≥})],
where A,G are the classes of the arithmetical hierarchy which contain A and Gf respectively.

In the next part of the proof we will use well known properties of the classes of the
arithmetical hierarchy to analyse the four possible cases:

Let A ∈ Σ0
m −Π0

m, Gf ∈ Σ0
n −Π0

n. Then we have:

lbA,f ∈ ∀[¬{R≥} ∨ ¬Σ0
m ∨ ∀(¬Σ0

n ∨ {R≥})] ⊂ ∀[¬Σ0
0 ∨ ¬Σ0

m ∨ ∀(¬Σ0
n ∨ Σ0

0)]

= ∀[(¬Σ0
m) ∨ ∀(¬Σ0

n)] = ∀[Π0
m ∨ ∀Π0

n].

It is known that ∀Π0
i = Π0

i for i > 0, so if A ∈ Σ0
m−Π0

m, Gf ∈ Σ0
n−Π0

n are not empty then
m,n > 0 and ∀[Π0

m ∨ ∀Π0
n] = Π0

max (m,n).
Let A ∈ Π0

m, Gf ∈ Σ0
n −Π0

n. Then

lbA,f ∈ ∀[¬{R≥} ∨ ¬Π0
m ∨ ∀(¬Σ0

n ∨ {R≥})] ⊂ ∀[¬Π0
0 ∨ ¬Π0

m ∨ ∀(¬Σ0
n ∨Π0

0)]

= ∀[Σ0
0 ∨ Σ0

m ∨ ∀(Π0
n ∨Π0

0)] = ∀[Σ0
m ∨ ∀Π0

n]

By analogy with the previous case we obtain n > 0, hence:

lbA,f ∈ ∀[Σ0
m ∨Π0

n] ⊂



∀Σ0

m = Π0
m+1 m > n

∀[Π0
m+1 ∨Π0

n] = Π0
m+1 m = n

∀Π0
n = Π0

n m < n.



Now for A ∈ Σ0
m −Π0

m, Gf ∈ Π0
n we have:

lbA,f ∈ ∀[¬{R≥} ∨ ¬Σ0
m ∨ ∀(¬Π0

n ∨ {R≥})] ⊂ ∀[¬Σ0
0 ∨ ¬Σ0

m ∨ ∀(¬Π0
n ∨ Σ0

0)]

= ∀[Π0
m ∨ ∀Σ0

n] = ∀[Π0
m ∨Π0

n+1] = Π0
max(m,n+1).

And the last case: A ∈ Π0
m, Gf ∈ Π0

n.

lbA,f ∈ ∀[¬{R≥} ∨ ¬Π0
m ∨ ∀(¬Π0

n ∨ {R≥})] ⊂ ∀[¬Σ0
0 ∨ ¬Π0

m ∨ ∀(¬Π0
n ∨ Σ0

0)]

= ∀[(Σ0
m) ∨ ∀(Σ0

n)] = ∀[Σ0
m ∨Π0

n+1].

With respect to the m,n we obtain:

lbA,f ∈ ∀[Σ0
m ∨Π0

n+1] ⊂



∀Σ0

m = Π0
m+1 m > n+ 1

∀[Π0
m+1 ∨Π0

n+1] = Π0
m+1 m = n+ 1

∀Π0
n+1 = Π0

n+1 m < n+ 1

and finally

lbA,f ∈
{

Π0
n+1 n ≥ m

Π0
m+1 n < m.

The above results can be summarized in the following way. Let the set A be in Σ0
m∪Π0

m

and the graph Gf ∈ Σ0
n ∪ Π0

n. ¿From the previous considerations we can observe that
the relation lbA,f is always in the class Π0

k, where k is equal to max(m,n) in some cases
incremented by one. Precisely: if ρ(A,Gf ) will be defined as 0 for the disjunction of the
conditions m > n ∧A ∈ Σ0

m −Π0
m, n > m ∧Gf ∈ Σ0

n −Π0
n, m = n ∧A ∈ Σ0

m −Π0
m ∧Gf ∈

Σ0
n −Π0

n and ρ(A,Gf ) will be defined as 1 otherwise then:

lbA,f ∈ Π0
max(m,n)+ρ(A,Gf ).

Now let us recall the obvious fact that RA,fI is satisfied for n, x̄, t iff t is the greatest
lower bound for f(x̄, 0), . . . , f(x̄, i), . . . e.g.

RA,fI (n, x̄, t) ⇐⇒ lbA,f (n, x̄, t) ∧ (∀s)lbA,f (n, x̄, s)⇒ s ≤ t.

Again we use the operations on families on relations to establish the class Y to which RA,fI

belongs:
Y = X ∧ ∀[X ⇒ {R≤}] = X ∧ ∀[¬X ∨ {R≤}] ⊂ X ∧ ∀[¬X ∨ Σ0

0]

where X is the class of the arithmetical hierarchy which contains lbA,f . If X = Π0
t then

Y ⊂ Π0
t ∧ ∀[¬Π0

t ∨ Σ0
0] = Π0

t ∧ ∀[Σ0
t ∨ Σ0

0] = Π0
t ∧ ∀Σ0

t = Π0
t ∧Π0

t+1 = Π0
t+1.

The proof is finished by substituting t by the proper expression: max(m,n) + ρ(A,Gf ). �
We are ready to prove the main result in this section. Here we present the connection

between the initial arithmetical classes of some given function and indices and the class
obtained after an application of limes inferior to this function.

Theorem 3.2 Let f : Nk+1 → N be a function such that Gf ∈ Σ0
n ∪ Π0

n. Then for A ∈
Σ0
m ∪Π0

m and
F (x̄) = lim inf

y∈A,y→∞
f(x̄, y)

we have
GF ∈ Π0

max(m,n)+ρ(A,Gf )+3

where ρ is defined as in the Lemma 3.1.



Proof. Let us recall that

lim inf
y∈A,y→∞

f(x̄, y) = sup
n

inf
i≥n,i∈A

f(x̄, i) = sup
n
{t : RA,fI (n, x̄, t)}.

For the graph of the function F we have

GF (x̄, y) ⇐⇒ y = sup
n
{t : RA,fI (n, x̄, t)} ⇐⇒

∀n∀t[RA,fI (n, x̄, t)⇒ t ≤ y] ∧ ∀w[∀n∀t(RA,fI (n, x̄, t)⇒ t ≤ w)⇒ (y ≤ w)].
That last relation is equivalent to the one below:

∀n∀t[¬RA,fI (n, x̄, t) ∨R≤(t, y)] ∧ ∀w[∃n∃t(RA,fI (n, x̄, t) ∧ ¬R≤(t, w)) ∨R≤(y, w)].

Because the class of GF is determined by the class of RA,fI we can - as in the previous
lemma - transform our problem in the form which is connected rather with families of
relations than with relations:

GF ∈ ∀∀[¬Y ∨ {R≤}] ∧ ∀[∃∃(Y ∧ ¬{R≤}) ∨ {R≤}],
where Y is a class of the relation RA,fI which always belongs to some Π0

k so we have:

∀∀[¬Π0
k ∨ {R≤}] ∧ ∀[∃∃(Π0

k ∧ ¬{R≤}) ∨ {R≤}]
= ∀[¬Π0

k ∨ {R≤}] ∧ ∀[∃(Π0
k ∧ ¬{R≤}) ∨ {R≤}]

⊂ ∀[¬Π0
k ∨ Σ0

0] ∧ ∀[∃(Π0
k ∧ ¬Σ0

0) ∨ Σ0
0]

= ∀[Σ0
k ∨ Σ0

0] ∧ ∀[∃(Π0
k ∧Π0

0) ∨ Σ0
0]

= ∀[Σ0
k] ∧ ∀[∃Π0

k ∨ Σ0
0] = Π0

k+1 ∧ ∀[Σ0
k+1 ∨ Σ0

0]
= Π0

k+1 ∧ ∀Σ0
k+1 = Π0

k+1 ∧Π0
k+2 = Π0

k+2.

Now it is sufficient to use the result of the Lemma 3.1 to end the proof. �
The next theorem is simply a symmetric version of the previous one. Of course, by an

obvious similarity of the notions supremum and infimum we get the below result for limes
superior by a slight modification in the proof for limes inferior.

Theorem 3.3 Let f : Nk+1 → N be a function such that Gf ∈ Σ0
n ∪ Π0

n. Then for A ∈
Σ0
m ∪Π0

m and
F (x̄) = lim sup

y∈A,y→∞
f(x̄, y)

we have
GF ∈ Π0

max(m,n)+ρ(A,Gf )+3

where the function ρ is the same as in the previous theorem.

Proof. We will follow the proofs of the Theorem 3.2 and Lemma 3.1. The similar denota-
tions for upper bound

ubA,f (n, x̄, t) ⇐⇒ (∀j ≥ n, j ∈ A)f(x̄, j) ≤ t
and for the restricted least upper bound

RA,fS (n, x̄, t) ⇐⇒ ubA,f (n, x̄, t) ∧ (∀s)ubA,f (n, x̄, s)⇒ s ≥ t
lead us to the equation:

GF (x̄, y) ⇐⇒ y = inf
n
{t : RA,fS (n, x̄, t)} ⇐⇒

∀n∀t[¬RA,fS (n, x̄, t) ∨R≥(t, y)] ∧ ∀w[∃n∃t(RA,fS (n, x̄, t) ∧ ¬R≥(t, w)) ∨R≥(y, w)].
Because the only difference with the adequate equation in the proof of the Theorem 3.2 is
a replacement of R≤ by R≥ so the theorem holds. �



4 Infinite limits

Here we give the main results of the paper. First we will consider the case of infinite limits
on functions f : Nn+1 → N, where the limit is computed on some set A ⊂ N. Let us rewrite
that the analogous result for unrestricted limits is the Shoenfield’s Limit Lemma[11]. In
this section we also get as a corollary some part of this lemma. We finish this section of the
paper with the theorem summarizing the influence of infinite limits with restricted indices
on arithmetical relations.

The first lemma of this section formulates some possible appreciation of an effect of the
operation of infinite limits on arithmetical relations.

Lemma 4.1 Let us define the function F : Nn → N in the following manner:

F (x̄) = lim
y→∞,y∈A

f(x̄, y),

where A ⊂ N is in Σ0
m ∪ Π0

m and f : Nn+1 → N, Gf ∈ Σ0
n ∪ Π0

n for some n,m ∈ N. Then
the graph GF of the function F :

GF (x̄, y) ⇐⇒ F (x̄) = y

has the property below:
GF ∈ Σ0

max(m,n)+φ1(A,Gf )+1,

where

φ1(A,Gf ) =





0 (m > n ∧A ∈ Σ0
m −Π0

m)
∨(m < n ∧Gf ∈ Π0

n)
∨(m = n ∧A ∈ Σ0

m −Π0
m ∧Gf ∈ Π0

n)
1 otherwise

Proof. Let us start with an obvious equivalence:

GF (x̄, y) ⇐⇒ ∃t∀mR(m, t, x̄, y)

where
R(m, t, x̄, y) ⇐⇒ [m > t ∧m ∈ A]⇒ Gf (m, x̄, y)

⇐⇒ ¬(m > t) ∨ ¬A(m) ∨Gf (m, x̄, y).

As in the previous results we use operations on families of sets and relations for our problem:

R ∈ {R>} ∨ ¬A ∨ G ⊂ ¬A ∨ G,

where A,G are classes which contain A and Gf respectively.
We will establish the class R of the relation R by consideration of the four cases. As

the first we take A ∈ Σ0
m − Π0

m, Gf ∈ Σ0
n − Π0

n. Then R is in Π0
m ∨ Σ0

n. We can analyse
that: for m > n we have R ∈ Π0

m, for n > m we have R ∈ Σ0
n and for m = n we have

R ∈ Σ0
n ∨Π0

n ⊂ Π0
n+1. Now for A ∈ Π0

m, Gf ∈ Σ0
n −Π0

n we have R ∈ Σ0
m ∨Σ0

n = Σ0
max(m,n).

As the third case we look at A ∈ Σ0
m − Π0

m, Gf ∈ Π0
n. We can consider here only the case

when m 6= 0 6= n, because m = n = 0 is the part of the first case in this proof. Now
R ∈ Π0

m ∨ Π0
n = Π0

max(m,n). And at the end: if A ∈ Π0
m, Gf ∈ Π0

n then R is in Σ0
m ∨ Π0

n

and for m > n we have R ∈ Σ0
m, for n > m we have R ∈ Π0

n and for m = n we have
R ∈ Σ0

m ∨Π0
m ⊂ Π0

m+1.



Because class of GF is equal to ∃∀R so we have:

GF ∈





∃∀Π0
m = Σ0

m+1 A ∈ Σ0
m −Π0

m, Gf ∈ Σ0
n −Π0

n,m > n
∃∀Σ0

n = Σ0
n+2 A ∈ Σ0

m −Π0
m, Gf ∈ Σ0

n −Π0
n,m < n

∃∀Π0
n+1 = Σ0

n+2 A ∈ Σ0
m −Π0

m, Gf ∈ Σ0
n −Π0

n,m = n
∃∀Σ0

max(m,n) = Σ0
max(m,n)+2 A ∈ Π0

m, Gf ∈ Σ0
n −Π0

n

∃∀Π0
max(m,n) = Σ0

max(m,n)+1 A ∈ Σ0
m −Π0

m, Gf ∈ Π0
n

∃∀Σ0
m = Σ0

m+2 A ∈ Π0
m, Gf ∈ Π0

n,m > n
∃∀Π0

n = Σ0
n+1 A ∈ Π0

m, Gf ∈ Π0
n, n > m,

∃∀Π0
m+1 = Σ0

m+2 A ∈ Π0
m, Gf ∈ Π0

n,m = n,

which can be reduced to the thesis of lemma. �
The analogous characterization of the relation GF is given in the next lemma. We use a

different formulation of limit which provides us with another appreciation of the final class
of the graph of the function F .

Lemma 4.2 Let us define the function F : Nn → N in the following manner:

F (x̄) = lim
y→∞,y∈A

f(x̄, y),

where A ⊂ N is in Σ0
m ∪ Π0

m and f : Nn+1 → N, Gf ∈ Σ0
n ∪ Π0

n for some n,m ∈ N. Then
the graph GF of the function F :

GF (x̄, y) ⇐⇒ F (x̄) = y

has the property below:
GF ∈ Π0

max(m,n)+φ2(A,Gf )+1,

where

φ2(A,Gf ) =





0 (m > n ∧A ∈ Σ0
m −Π0

m)
∨(m < n ∧Gf ∈ Σ0

n −Π0
n)

∨(m = n ∧A ∈ Σ0
m −Π0

m ∧Gf ∈ Σ0
n −Π0

n)
1 otherwise

Proof. Because the expression limy→∞,y∈A f(x̄, y) is convergent so the relation GF (x̄, z) (
z is a limit of f(x̄, y) for y ∈ A) is equivalent to

GF (x̄, z) ⇐⇒ ∀t∃mS(m, t, x̄, z),

where
S(m, t, x̄, y) ⇐⇒ m > t ∧m ∈ A ∧Gf (m, x̄, y)

Then then following inclusion holds:

S ∈ {R>} ∧ A ∧ G ⊂ A ∧ G,
where A,G are classes which contain A and Gf respectively. Let us find the class S of the
relation S by consideration of the four cases. From the similar consideration as in the above
lemma we get:

S ∈





Π0
m A ∈ Π0

m, Gf ∈ Σ0
n −Π0

n,m > n
Σ0
n A ∈ Π0

m, Gf ∈ Σ0
n −Π0

n,m < n
Σ0
m+1 A ∈ Π0

m, Gf ∈ Σ0
n −Π0

n,m = n
Σ0

max(m,n) A ∈ Σ0
m −Π0

m, Gf ∈ Σ0
n −Π0

n

Π0
max(m,n) A ∈ Π0

m, Gf ∈ Π0
n

Σ0
m A ∈ Σ0

m −Π0
m, Gf ∈ Π0

n,m > n
Π0
n A ∈ Σ0

m −Π0
m, Gf ∈ Π0

n, n > m,
Σ0
n+1 AΣ0

m− ∈ Π0
m, Gf ∈ Π0

n,m = n.



Finally the thesis follows immediately from the above equation and from the fact that GF
is a subset of ∀∃S. �

We turn now to the Shoenfield’s Limit Lemma. This result proves that the functions com-
putable from the halting problem can be defined by infinite limits from recursive functions.
The class ∆0

2 (which appears in the lemma) has its own importance. It plays a considerable
role in degree theory (e.g. [2]), this class has also a strong connection to learning theory (for
example problems of classifiable classes in [12]).

Here we can present the part of Shoenfield’s Limit Lemma as the simple corollary from
the above given lemmas.

Corollary 4.3 If the function f : N2 → {0, 1} is recursive then the set C such that x ∈
C ⇐⇒ limy→∞ f(x, y) = 1 belongs to ∆0

2.

Proof. ¿From the fact that f is recursive we have Gf ∈ Σ0
0 = Π0

0. In this case A is equal
to N ∈ Π0

0 = Σ0
0. Let F (x) = limy→∞ f(x, y). The first lemma in this section gives us

GF ∈ Π0
2, the second one GF ∈ Σ0

2, so GF ∈ ∆0
2. The characteristic function cC of the set

C can be defined by means of the characteristic function of GF : cC(x) = cGF (x, 1), so C is
recursive in GF and hence it is in ∆0

2 class. �
By a simple comparison of the above two lemmas we can formule the theorem simplifying

the resulting class of the relation GF . In this result we have a characteristics of a degree in
which the function loses its computability when it is transformed by the operation of infinite
limits with indices which are in some arithmetical set.

Theorem 4.4 If F (x̄) = limy→∞,y∈A f(x̄, y), where A ⊂ N is in Σ0
m ∪Π0

m and f : Nn+1 →
N, Gf ∈ Σ0

n ∪ Π0
n for some n,m ∈ N, then the graph GF of the function F belongs to

∆0
max(m,n)+1 for m > n and A ∈ Σ0

m −Π0
m otherwise GF belongs to ∆0

max(m,n)+2.

5 Infinite limits and Turing degree

Let us use the above results to establish the problem of a proper Turing degree for a function
(relation) which is obtained by a restricted limit. Precisely, let

F (x̄) = lim
y→∞,y∈A

f(x̄, y),

where A ⊂ N is in 0(m) and f : Nn+1 → N, Gf ∈ 0(n) for some n,m ∈ N. Our question is:
in which Turing degree 0(k) is the relation GF ?

This question can be understood as a problem of finding degree of unsolvability for a
new function created with two parameters: with unsolvable in some way indices of limit and
with an unsolvable given function.

We simplify this problem by the condition that A,Gf are the sets ∅(m) and ∅(n), which
are representatives of 0(m) and 0(n), respectively.

Let us start with some results concerning relations between Σ0
n,Π

0
n sets and Turing

degrees 0(n) and sets ∅(n). The first helpful lemma is cited after Shoenfield [11].

Lemma 5.1 The highest degree of a Σ0
n or a Π0

n set is 0(n). In other words:

A ∈ Σ0
n ∪Π0

n ⇒ A ∈ 0(k) ∧ k ≤ n.

Moreover: every Σ0
n-complete or Π0

n-complete set has the degree 0(n).

The next result is from Odifreddi [9]



Lemma 5.2 The set ∅(n) is Σ0
n-complete.

From the above results and from the previous sections we have the consequence:

Lemma 5.3 If
F (x̄) = lim

y→∞,y∈A
f(x̄, y),

and A = ∅(m), Gf = ∅(n) then GF ∈ 0max(m,n)+2.

Proof. From A = ∅(m), Gf = ∅(n) we have A is Σ0
m-complete, Gf is Σ0

n-complete so
A ∈ Σ0

m, Gf ∈ Σ0
n. In the ’worst’ case from Lemma 4.1 we have GF ∈ Σ0

max(m,n)+2, from
Lemma 4.2 we have GF ∈ Π0

max(m,n)+2, hence GF ∈ 0max(m,n)+2. �
We can interpret this result in such a way that two kinds of unsolvability in restricted

infinite limit are parallel, they do not accumulate themselves but only the greater of them
is taken into account (with addition of the constant factor 2).

6 Conclusions

In this paper we introduced the method of defining natural functions by restricted limits.
In this case indices of limits are taken from a given arithmetical set. Such method can
be viewed as a relativization of definitions with infinite limits [11]. We found the place of
functions defined in the above mentioned way in the arithmetical hierarchy. Strictly speaking
we analysed graphs of such functions with respect to the arithmetical levels of functions and
sets of indices given as arguments.

The usefulness of such idea can be derived from a possibility of wider applications of
restricted limits in definitions of new functions. Let us observe that particular levels of the
arithmetical hierarchy can be constructed by restricted limits applied to recursive functions
but with indices going through properly taken sets. These sets of indices may be introduced
in the same way as a result of starting from recursive sets.

We presented that the above described method of definition, in its essence conditioned
by two parameters: a class of indices and a class of functions graph, in reality is connected
only with the greater one (with the additional small constant). This can be interpreted as, in
some sense, parallel character of computability of factors used in definitions with restricted
limits. The same result is applicable to Turing degrees.

Restricted limits, as a relativization of infinite limits, can be adapted to known problems
of computability theory. For example, with our results we gave an easy proof of an essential
part of the Shoenfield’s Limit Lemma.

As the directions of the future work we can point out the following problems:
- how such kind of restricted limits can be adequately used to model and analyse the

behaviour of nonstandard Turing machines (e.g. accelerated Turing machines);
- in which way definitions with restricted limits can be useful in modeling of learning

processes and information theory;
- when strengthened restrictions placed on indices will be sufficiently strong to be invari-

ant with respect to classical computability (recursiveness)?
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