
Jianxin Zhou / Bingxin Shi / Ling Zou / Hui Shen74 Improve TCP Performance in Ad Hoc Netwoks 75

Improve TCP Performance in Ad Hoc Networks

Jianxin Zhou * Bingxin Shi Ling Zou Hui Shen

Abstract

Standard TCP misinterpret mobility loss in Ad hoc network as congestion loss, thus, it reduce the
TCP performance by invoking unnecessary congestion control action. In this paper, we propose
two approaches, simELFN (an variation of TCP-ELFN) and TCP-FSR (an variation of TCP-F).
They can distinguish the essence of packet loss and avoid multiple consecutive dupACKs.
Analyses and simulations show that they can achieve better TCP performance in Ad hoc network.

Keywords: Ad hoc Networks; simELFN; TCP-FSR; TCP performance.

1 Introduction
Ad hoc network is a novel wireless network model, which is an autonomous system of a group of
mobile routers, and associated hosts, connected by wireless links. The union of these wireless
links can form an arbitrary graph[1]. Nodes within each other�s radio range can communicate with
each other directly via wireless links, while those far apart can talk to each other in a multi-hop
routing fashion by using other nodes as relays. With the popularity of mobile computing device
and wireless network, the research of ad hoc network has attracted much attention recently. Most
works were focused on the development of routing protocols because of the importance of
�routing�, and not much attention was paid to the improvement of TCP performance over Ad hoc
network, albeit in fact, it may enhance the network performance dramatically, which will be
shown latter in this paper.

TCP, which provides application layer with reliable connection-oriented packet transmission
service over an unreliable underlying IP layer, is a vital component of the Internet protocol suite.
Presently, TCP used in Internet, which is referred as standard TCP1 in this paper, is designed for
wireline network. It assumes that all packet losses are due to the network congestion, and
immediately invokes congestion control action to alleviate the congestion by reducing sending rate
when it detects a packet loss. In other words, standard TCP cannot distinguish congestion from
packet loss due to transmission errors or route failures. Standard TCP can work efficiently in
wireline network since the latter situations happen very rarely there.

Nevertheless, on the other hand, in an Ad hoc network, data packet losses happen frequently.
This is partially due to its using error-prone wireless links as transmission medium. The effect of
these packet losses can be reduced by using reliable link layer protocols [2]. However, there is
another reason of packet loses which is much harder to deal with: the route failure, which occurs
frequently and unpredictably during the lifetime of a transport session, due to the relative motion
of nodes in Ad hoc network. During the period of route failure, none of the data packets can reach

* Dept. of Electronics & Information Eng., HuaZhong University of Science and Technology, Wuhan,
People�s Republic of China, 430074 Email: socall92@hotmail.com
1 In this paper, �standard tcp� is Reno.

Jianxin Zhou / Bingxin Shi / Ling Zou / Hui Shen74 Improve TCP Performance in Ad Hoc Netwoks 75

the destination through the existing route, and may result in packet loss. Thus, the TCP source
may take the following actions[3]:

1. Retransmit unacknowledged packets upon timing out.
2. Invoke congestion control action that include exponentially backoff the retransmission

timers and immediate shrinking of the congestion window size, thus reducing the
transmission rate.

3. Enter a slow start recovery state to ensure that the network congestion has reduced
before resuming packet transmission at the normal rate.

But if these packet losses are due to route failure, previous actions are undesirable for the
following reasons:

1. When there is no route available, there is no need to retransmit packets that will anyway
not reach the destination.

2. Packet retransmission wastes precious battery power and scarce bandwidth of mobile
node.

3. In the period immediately following the re-establishment of the route, the throughput
will be unnecessarily low as a result of the slow start recovery mechanism even though
there is actually no congestion in the network.

Most of the current approaches for improving TCP performance, such as TCP-F[3] and TCP-
ELFN[4], etc., use feedback from network/link layer of intermediate mobile nodes to reduce the
effect on TCP performance by route failure. The network/link layer at an intermediate mobile node
sends explicitly a RFN (Route Failure Notification) packet to the TCP source as soon as it detects a
route failure. On receiving RFN, the TCP source will freeze TCP transmission and keep the current
TCP state according to the RFN; and the TCP source will resume TCP transmission from the
original state before route failure after detecting route re-establishment. However, they may cause
multiple consecutive dupACKs(duplicated Acknowledgements) in the period immediately
following the route re-establishment. Consequently, TCP source invoke �Fast Retransmit/Fast
Recovery�[5] action, reducing the TCP performance needlessly. The approaches proposed by this
paper, simELFN and TCP-FSR, aim at avoiding these multiple consecutive dupACKs.

2 Assumptions

For the forthcoming discussions, we make the following assumptions:

1 simELFN and TCP-FSR chooses DSR as its routing protocols. Though they are applicable
upon any �on-demand� routing protocols, most former works, such as TCP-F and TCP-ELFN,
are based on DSR. To ensure fair comparison with former approaches, we choose DSR as
routing protocol in this paper too.

2 DSR is disabled to reply route request from route cache. This assumption bases on the result
of the simulation, by Holland etc. [4], that it will reduce TCP performance when reply request
from route cache for the effect of stale route information in route cache.

3 RFN and RRN (Route Re-establishment Notification) are assumed never be lost when there is
a route to their destination. This paper focuses on the effect of TCP performance by route
failure in Ad hoc network, but much less attention on transmission errors.

Jianxin Zhou / Bingxin Shi / Ling Zou / Hui Shen76 Improve TCP Performance in Ad Hoc Netwoks 77

3 Related researches

3.1 DSR routing protocol
DSR[6] is an �on-demand� routing protocol developed by CMU researchers. It employs source
routing wherein the source determines the complete sequence of nodes through which a
packet is to be routed. Whenever a TCP source has a packet to transmit, it checks its route
cache for a route to the destination. In case no route is found, then a �route request� broadcast
is initiated. On receiving this request, each node again broadcasts this request by appending
its address to the request packet until this packet reaches the destination. Then the destination
sends a route reply to the source containing the route from the source to the destination. When
the route reply reaches the source, a connection is established and all subsequent packets
contain the complete route in the packet header. DSR will broadcasts �route error� message
when it detects a route failure due to the motion of downstream neighbor. A packet which has
no suitable route to it�s destination temporarily will be reserved in send_buf during the �route
discovery� period until it is sent out or dropped by DSR for its remaining in send_buf longer
than SEND_TIMEOUT.

3.2 TCP-ELFN
TCP-ELFN[4] (Explicit Link Failure Notification) is a technique based on feedback. The objective
is to provide the TCP source with information about link and route failures so that it can avoid
responding to the failures as if congestion happened. TCP-ELFN is based upon DSR routing
protocol. To implement ELFN message, the route failure message of DSR was modified to carry a
payload similar to the �host unreachable� ICMP message. When a TCP source receives an ELFN
message, it freezes its retransmission timers and enters a �stand-by� mode. A packet is sent
periodically to probe the network to see if a route has been established. After receiving a new ACK
(imply the route has been reconstructed), the source leaves �stand-by� mode, restores its
retransmission timers and continues to transmit packet as normal.

3.3 TCP-F
TCP-F[3] relies on the network layer at intermediate nodes to detect the route failures. In TCP-F, a
TCP source can be in two states, �active� state and �snooze� state. Transmission is controlled by the
standard TCP when TCP source is in �active� state. The intermediate node will explicitly sends the
TCP source a Route Failure Notification (RFN) if it detects a link failure. After receiving the RFN,
the TCP source will go into the �snooze� state by stopping sending any further packet and freezing
the value of TCP state variables such as retransmission timer and congestion window size. The
TCP source remains in the �snooze� state until it is notified of the restoration of the route through a
Route Re-establishment Notification (RRN) from an intermediate node and then goes back to
�active� state.

3.4 ECP-ELFN
ECP-ELFN[7] is an variation of TCP-ELFN. It uses the feedback to notify source route failure too.
But the congestion control mechanism of ECP-ELFN is based on hop-by-hop rate control, not base
on window control, which make it is top-priority when a transmission require little jitter of sending
rate. However, as other rate-based congestion control algorithms, ECP-ELFN is slow-responsive to
network congestion, so it has more possibility to cause congestion or worsen the degree of network
congestion. Because of different mechanisms, in simulations of this paper, we didn�t compare the
performance of ECP-ELFN with our approaches.

Jianxin Zhou / Bingxin Shi / Ling Zou / Hui Shen76 Improve TCP Performance in Ad Hoc Netwoks 77

4 simELFN

4.1 Description of simELFN
simELFN utilizes network layer feedback too. It can based upon any �on-demand� routing

protocol (In this paper, we use DSR as example). In simELFN, The TCP source can be in two state,
�normal� and �froze�. In �normal� state, TCP source�s behavior is the same as standard TCP; in
�froze� state, TCP source�s retransmit timers and cwnd is frozen and it stops sending out packet. In
order to avoid dupACKs by �probe� packets, simELFN doesn�t send �probe� packet periodically in
�froze� mode. simELFN operation can be described as follows:

step 1: TCP source is in �normal� state. It transmits packets as standard TCP.

step 2: While TCP source receives a ELFN packet with �host unreachable� message, it enter
into �froze� state from �normal�, freezes retransmit timers and cwnd, and invokes a frozeTimer. The
timeout of timer is:

constant;ais,10RTT*UTSEND_TIMEO ��� ��

The value of timeout is set as SEND_TIMEOUT-�*RTT, so TCP can immediately enforcedly
defrost when all flying packets and ACKs are dropped by DSR agent from it�s send_buf.

step 3: TCP source remains in �froze� state until it receives a new ACK, which imply route has
been reconstructed. Then, TCP source is defrosted, enters �normal� state from �froze�. Return to
step 1, transmit packet as normal, and cancel the frozeTimer.

Since any TCP source state variables (such as cwnd, ssthresh, t_seqno_, and last_ack, etc) is
not modified during TCP source is in �froze� state, it can return the original state (slow start or
congestion avoidance) before route failure when TCP is resumed.

Known from 3.1 section, DSR Agent will reserve the packet without route in send_buf as long
as SEND_TIMEOUT, so the packet or ACK can be transmitted correctly after route reconstruction
if the route failure period is shorter than SEND_TIMEOUT.

step 4: The frozeTimer is timeout (TCP still be �froze� state), then TCP is defrosted enforcedly,
enter �normal� state from �froze�. And return to step 1.

This step is an important part of simELFN, it guarantee TCP from being locked in �froze� state.
If route failure period is longer than SEND_TIMEOUT, all flying packets and ACKs will be
dropped by DSR agent as TCP remain in �froze� state. Without this step, TCP source will wait an
ACK to leave �froze� state and resume the normal TCP transmission, while TCP receiver will not
send a new ACK until it receive a packet. So TCP will be locked in �froze� state even route has
been reconstructed under this scenario .

Fig. 1 gives a finite state machine of TCP in simELFN. Contents in the box is the same as
standard TCP.

Jianxin Zhou / Bingxin Shi / Ling Zou / Hui Shen78 Improve TCP Performance in Ad Hoc Netwoks 79

initial

recv ACK

retrans. timer timeout

Slow StartcwndM SScwnd +¬
2/cwndssthresh �

MSScwnd �

Congestion
avoidance

recv ACK

)(ssthreshcwndIF �

cwndMSScwndcwnd /��

Fast Retransmit/
Fat Recovery

recv Three dup ack

M SSssthreshcwnd
cwndssthresh

���
�

3
2/

recv dup ACK
MSScwndcwnd �� recv new ACK

MSSssthreshcwnd ��

Froze

recv ELFN

invoke frozeTimer
frozeTimer timeout

recv ACK

Fig. 1: finite state machine of TCP in simELFN

Fig.1: finite state machine of TCP in simELFN

4.2 Analyses of simELFN
TCP-ELFN can distinguish the essence of packet loss through explicit feedback. It will freeze

TCP if the packet loss is caused by route failure. And it can resume TCP transmission from the
original state, not always from �slow start�, after route reconstruction, which make TCP utilizes
bandwidth efficiently and improve TCP performance. However, the �probe� packet pumped by
TCP source during route failure period may cause multiple consecutive dupACKs after route
reconstruction, which will make TCP invokes �Fast Retransmit/Fast Recovery� action and
decrease the ssthresh and cwnd. It certainly will reduce TCP performance, which is not our wishes.

Like TCP-ELFN, simELFN can distinguish essence of packet loss through explicit feedback,
avoid invoking unnecessary congestion control action, and it will avoid causing multiple
consecutive dupACKs like TCP-ELFN, i.e., avoid invoking �Fast Retransmit/Fast Recovery�, so it
can improve TCP performance over Ad hoc network more efficient than TCP-ELFN. And
simELFN has the following characters:

1. Simple. TCP source needn�t send �probe� packet during it be in �froze� state, which
can save the energy and bandwidth of mobile nodes.

2. Reliable. Timeout of frozeTimer is the finally mechanism to resume TCP
transmission, which guarantee TCP from being locked in �froze� state.

3. Efficient. If route failure period is short, performance of simELFN is better than
TCP-ELFN since it is free of multiple consecutive dupACKs.

If route failure period is longer than SEND_TIMEOUT, TCP source rely on frozeTimer
timeout to resume TCP transmission. simELFN is degraded to Reno. In this scenario, performance
of TCP-ELFN is better than simELFN, although route failure period is scarcely longer than
SEND_TIMEOUT.

4.3 Simulations of simELFN
Simulation results in this paper are based on Ns2[8]. All mobile nodes use IEEE 820.11 as

MAC protocol, and their radio communication range is 250 meters.
The topology for simulating simELFN is shown in Fig. 2. There are four mobile nodes, with a

TCP connection between node 1 and 4 which are fixed in the whole simulation period. A FTP

Jianxin Zhou / Bingxin Shi / Ling Zou / Hui Shen78 Improve TCP Performance in Ad Hoc Netwoks 79

application is on node 1, starting sending data at 10sec. The route between node 1 and 4 is failed
and reconstructed due to the movement of node 2 and 3.

Fig. 3 shows the simulating result of short route failure period (shorter than SEND_TIMEOUT
- �*RTT), part (a) gives the result of cwnd and part (b) gives the result of seqno. In Fig. 3, route is
failed at t1, and is reconstructed at t2. From Fig. 3, The result(includes part (a) and (b)) of Reno,
TCP-ELFN and simELFN is similar completely before t1, which implies that simELFN transmits
packet as standard TCP when there is no route failure. From part (a), route is failed at t1, then
Reno invokes congestion control action and set cwnd to 1. However TCP-ELFN and simELFN
enter �froze� state after receiving ELFN message from intermediate nodes and keep states of TCP
connection. When route between node 1 and 4 is reconstructed at t2, Reno resumes TCP
transmission from Slow Start, while TCP-ELFN and simELFN resume TCP from original state
before route failure. However, TCP-ELFN invokes �Fast Retransmit/Fast Recovery� because of
multiple consecutive dupACKs. From part (b), since it resume TCP transmission from original
TCP state and avoid invoking �Fast Retransmit/Fast Recovery�, simELFN gets the best TCP
performance. SimELFN achieves about 5% improvement based on Reno, and 2% improvement
based on TCP-ELFN. The improvement of TCP will be significant when route is failed frequently.

0.00 20.00 40.00 60.00
0

20

40

60

Reno
ELFN

simELFN

cwnd

T(s)

congestion window (short route failure period)

t1 t2

0.00 20.00 40.00 60.00
0

200

400

600

800

1000

1200

1400

1600

simELFN

ELFN

Reno

T(s)

seqno

seq num(short route failure period)

t1 t2

(a) congestion window (b) sequence number

Fig. 3: simulation result of short route failure period

1 2 3 4

2 3

Fig. 2: topology of simulation

Jianxin Zhou / Bingxin Shi / Ling Zou / Hui Shen80 Improve TCP Performance in Ad Hoc Netwoks 81

Fig. 4 shows the simulating results of long route failure period (longer than SEND_TIMEOUT
- �*RTT), part (a) gives the result of cwnd and part (b) gives the result of seqno. In Fig. 4, route is
failed at t1, frozeTimer of simELFN timeout at t2, and route is reconstructed at t3. From part (a),
after route is failed at t1, Reno invokes congestion control action and set cwnd to 1. However TCP-
ELFN and simELFN enter �froze� state. At t2, frozeTimer timeout, TCP of simELFN enter �normal�
from �froze� state enforcedly, and simELFN is degraded to Reno. When route between node 1 and
4 is reconstructed at t3, Reno and simELFN resume TCP transmission from Slow Start, while TCP-
ELFN resumes TCP from original state before route failure. part (b) shows that TCP-ELFN gets
the best TCP performance, Reno and simELFN get the same TCP performance.

0.00 20.00 40.00 60.00 80.00
0

10

20

30

40

50

T(s)

cwnd congestion window(long route failure period)

t1 t2 t3
Reno

ELFN

simELFN

0.00 20.00 40.00 60.00 80.00
0

400

800

1200

1600

Reno simELFN ELFN

t1 t2 t3

seqno

T(s)

seq num(long route failure period)

(a) congestion window (b) sequence number

Fig. 4: simulation result of long route failure period

 The results of Fig. 3 and Fig. 4 are quite the same as our analyses in section 4.2.

5 TCP-FSR

5.1 Limitations of TCP-F
Based on Fig. 5, the limitations of TCP-F are described in this section. Because of the random
motion of its nodes, Ad hoc network is often suffered from route failure, and sometimes even
multiple link failures occur simultaneously along a route.

Jianxin Zhou / Bingxin Shi / Ling Zou / Hui Shen80 Improve TCP Performance in Ad Hoc Netwoks 81

As shown in Fig. 5, there is a TCP connection between node 1 (TCP source) and 5 (TCP
receiver). Route between node 1 and 5 is failed at the links between nodes 2-3 and nodes 3-
4 at time t1 due to the motion of node 3. Then TCP-F will send RFNs back to TCP source
respectively from intermediate node 2 and 3, and these RFNs carry information of sequence
number being N+a2+y and N+a1+x respectively(assume that node 2 and 3 have sent out the
packet of sequence number being N+a2+y-1 and N+a1+x-1 at t1). However, only the RFN
from node 2 can reach the TCP source, while the one from node 3 is dropped since no route
for it to the TCP source. The TCP source enters into �snooze� state as soon as it receive the
RFN from node 2 and record N+a2+y as the sequence number of next packet to transmit.
After a period of route re-establishment delay, route between node 1 and 5 is re-established
at t4 as node 3� enter into communication range of node 2 and 4. Since DSR is disabled to
reply route request from route cache, route requests are always replied by receiver (node 5).
TCP-F will send a RRN to the TCP source from node 5 after it replies route request. TCP
source resumes transmission after receiving RRN. However, as mentioned above, since the
TCP source only receive the RFN from node 2 after route is failed at t1, TCP transmission
will be resumed from an incorrect state (packet of sequence number N+a2+y), which will
cause multiple consecutive dupACKs of sequence number N+a1+x. Consequently, the TCP
source invoke �Fast Retransmit/Fast Recovery� action. Table 1 describes the operations of
TCP-F in detail according to time.

From above description, it is clear that TCP-F cannot alleviate satisfactorily the effect
on TCP performance by multiple link failures along route at same time in Ad hoc network.
So a new approach, TCP-FSR, is worthy to be proposed in this paper for this problem.

1

3

2
N+a1

54
N

N+a2

N+a3N+a4
3'

Fig. 5: Topology of network

N represent packet of sequence number being N

In Fig:

a1<a2<a3<a4; all of them is integer

Route between 1 and 5 is failed at node 2-3 and node 3-4 at t1 due to
mobility of node 3

Route between 1 and 5 is re-established at t4 when node 3' come into
communication range of node 2 and 4

Jianxin Zhou / Bingxin Shi / Ling Zou / Hui Shen82 Improve TCP Performance in Ad Hoc Netwoks 83

Table 1: comparison of operations of TCP-F and TCP-FSR

Time TCP-F TCP-FSR Note

t1 Links of node 2-3 and node 3-4 are failed due to mobility of node 3

t2 =
t1+

1T�

Node 2 and 3 detect route failure, and send RFNs back to TCP
source. These RFNs carry the information of sequence number of
being transmitted packet (being N+a1+x and N+a2+y respectively)

1T� <<RTT;
N+a1<N+a1+x<N+a2<N+a
2+y<N+a3

t3 =
t2+

2T�
TCP source receives RFN from node 2, then freeze TCP and keep
the N+a2+y as the sequence number of the next packet 2/2 RTTT ��

Node 3� come into communication range of node 2 and 4. Then,
route between node 1 and 5 is re-established. After replying route
request, node 5 will

t4 =
t3+

3T�

Send RRN to TCP source send RRN to TCP receiver

3T� is route re-establish
delay, it is undetermined.
 �route reply� and RRN are
sent by receiver (node 5)
since DSR is disabled to
reply route request from
route cache

t5 =
t4+

4T�

After receiving RRN, TCP
receiver will send the ACK
of the newest data packet (
sequence number is N+a1+x
) to the TCP source

Since RRN is transmitted
only between different layer
at the same node (node 5) ,

4T� is almost ignorable.

The TCP source receive RRN, then
TCP resume transmission from
packet of sequence number
N+a2+y t6 =

t5+
5T�

The TCP source receive the
new ACK after route re-
establishment. Then, TCP
resume transmission from
packet of sequence number
N+a1+x

2/5 RTTT �� .
since 4T� is almost
ignorable, the TCP source
of TCP-FSR can receive
new ACK at t6 after route
re-establish.

T7 =
t6+

6T�

TCP source receive multiple
consecutive dupACKs of sequence
number N+a1+x, then it invoke
�Fast Retransmit/Fast Recovery�,
and retransmit from packet of
sequence number being N+a1+x

6T� =RTT

T8 =
t7+

7T�

After �Fast Recovery�, TCP source
enter �Congestion Avoidance�
phase, reducing congestion
window size. And continue TCP
transmission from packet of
sequence number N+a1+x+J

7T� =RTT
J is the number of dupACKs
received by TCP source
during �Fast Recovery�
phase.

Jianxin Zhou / Bingxin Shi / Ling Zou / Hui Shen82 Improve TCP Performance in Ad Hoc Netwoks 83

5.2 Description of TCP-FSR
In TCP-FSR, TCP source can also be in �froze� or �normal� state. When in �normal� state, TCP
source is controlled by the standard TCP too, and transmit data packet as standard TCP. While in
�froze� state, TCP source stop sending any further packet and freeze the state of retransmit timer
and congestion window size. Its operations can be described as follows:
Step 1: TCP source is in �normal� state when there is no route failure. It transmit packet as
standard TCP.

Step 2: When a node detects a route failure due to relative motion of downstream nodes, TCP-
FSR send a RFN which carry information of sequence number of the last packet being transmitted
before route failure (As in Fig-5, sequence number carried by RFN of node 2 and 3 are N+a2+y
and N+a1+x respectively) to TCP source.

Step 3: On receiving the RFN; If it is in �normal� state, the TCP source enters into �froze� state
and executes following actions:

I. Completely stops sending further packets(new or retransmissions);
II. Freezes retransmit timer and value of congestion window size;
III. Keeps current value of some TCP states, such as, setting t_seqno_ as sequence

number carried by the RFN;
IV. Starts a routes failure timer which deals with the worst case of route re-establishment.

The timeout value of this timer depends on the underlying routing protocol. Since
TCP-FSR is based on DSR protocol, the timeout of route failure timer is set as the
SEND_TIMEOUT which is the longest period of time of DSR agent keeping packet
without route to destination.

If it is in �froze� state, then the TCP source update the value of TCP states;

Step 4: TCP-FSR sends a RRN to TCP receiver after route is re-established.

Step 5: On receiving the RRN, the TCP receiver sends TCP source the latest ACK immediately.

Step 6: If TCP source receive an ACK in �froze� state, which implies the re-establishment of
route, it will unfreeze and enter into �normal� state. Back to step 1 and continue to transmit packet
as standard TCP from the TCP state kept by step 3, and cancel route failure timer.

Step 7: If route failure timer expires while TCP source is still in �froze� state, TCP source will
unfreeze forcibly, entering into �normal� state and letting congestion control mechanism of
standard TCP to handle this route failure. Back to step 1.

Table 1 gives the operations of TCP-FSR according to time.

Fig-6 shows the schematic figure of state machine of TCP-FSR.

Jianxin Zhou / Bingxin Shi / Ling Zou / Hui Shen84 Improve TCP Performance in Ad Hoc Netwoks 85

froze normal

RFN

ACK
timeout of route

failure timer

ACK

data packet

(a) part of TCP sender

receiver

ACK

data packet
RRN

(b) part of TCP receiver

Fig. 6: schematic Figure of state machine of TCP-FSR

5.3 Analyses of TCP-FSR
Known from Table-1 and above discussions, TCP-FSR is much more efficient than TCP-F in
improving TCP performance. It takes TCP-FSR a shorter time, about 2*RTT, than TCP-F to
resume TCP transmission as normal after route re-establishment when multiple link failures are
occurred along the route. And TCP-FSR avoids invoking �Fast Retransmit/Fast Recovery� in the
period immediately following route re-establishment. However, these advantages are based on the
assumptions of section 2 and some special scenarios. Now, we will compare the performance of
TCP-F and TCP-FSR under other situations:

� DSR doesn�t be disabled to reply route request from route cache. In this case, route request
may be replied by intermediate node (not always by TCP receiver), and similarly, RRN may
be sent out by intermediate node. Therefore, the 4T� (transmission delay of RRN), which is
between 0 and RTT/2 and thus with an average of RTT/4, in Table-1 can not be ignored
anymore. Consequently, TCP-FSR will be about 7/4*RTT (2*RTT-1/4*RTT) earlier than
TCP-F to resume data transmission as normal. But it will incur some undesired effect on
TCP performance by stale route information in route cache.

� There is only one link failure along the route. In this case, TCP-F can resume TCP
transmission as normal at t6 in Table-1. The performance of TCP-FSR is same as TCP-F�s.

� Route re-establishment delay is longer than SEND_TIMEOUT. In this case, the route failure
timer expires. Then, TCP-F and TCP-FSR let congestion control mechanism of standard TCP
to handle this route failure. The performances of TCP-F and TCP-FSR are same as standard
TCP�s;

There is no route failure. The behaviors of these three techniques are same under this situation
and therefore they have equivalent TCP performances.

5.4 Simulations of TCP-FSR
Experiment 1: The network topology of experiment 1 is shown in Fig. 5. There are 5 mobile
nodes in a 500 meters square. Among them, node 1, 2, 4 and 5 are fixed during the whole
simulation, while node 3 can move lengthways. There is a TCP connection between node 1 and 5,
with node 1 being the TCP source and node 5 being the TCP receiver. A FTP application on node
1 start to transfer data to node 5 at 10sec. From 30sec, we introduce 5 times route failures by
moving node 3, and let the route persist shortly each time after it is re-established. The result of
this simulation is given in Fig. 7, with part (a) showing the result of congestion window size and
part (b) showing the result of sequence number.

Jianxin Zhou / Bingxin Shi / Ling Zou / Hui Shen84 Improve TCP Performance in Ad Hoc Netwoks 85

0.00 20.00 40.00 60.00 80.00 100.00
0.00

20.00

40.00

60.00

80.00

congestion window size
Reno
TCP-F

TCP-FSR

cwnd

T(s)
0.00 20.00 40.00 60.00 80.00 100.00

0

500

1000

1500

2000

2500

sequence number

Reno
TCP-F
TCP-FSR

seq num

T(s)

Fig. 7: (a) congestion window size (b) sequence number

From Fig. 7, it is clear that the results in congestion window size and sequence number of
Reno, TCP-F and TCP-FSR are almost same before 30sec, which indicates their performance are
almost same when there is no route failure. While, there is much difference among their
performance since the route is failed. In the period from the first route failure to the re-
establishment of last one, Reno always stays in �slow start� phase, which reduces TCP
performance dramatically. What is more, since Reno back off RTT value exponentially when re-
transmission timer expires, it is the last one to resume TCP transmission when route is re-
established after the last route re-establishment, as shown in Fig. 7 (a). On the other hand, by
entering �froze� state and keeping TCP state when route is failed, TCP-F and TCP-FSR can
resume TCP transmission when the route is re-established from the original state before route
failure. Nevertheless, due to multiple consecutive dupACKs, TCP-F invokes �Fast Retransmit/Fast
Recovery� in the period immediately following the route re-establishment, which lower its
performance significantly. However, since it resume TCP transmission from original state before
route failure and avoid invoking �Fast Retransmit/Fast Recovery�, TCP-FSR achieves the best
TCP performance. Quantitatively, from part(b), wee can see that the sequence numbers of Reno,
TCP-F and TCP-FSR are 1054, 1052 and 1052 respectively at 30sec, and they are 1453, 1922 and
2039 at the end of simulation, which means TCP-FSR achieve 40% and 6% improvement based
on Reno and TCP-F respectively in whole simulation period. If we just consider their performance
after route failure (30sec), then Reno, TCP-F and TCP-FSR transmitted 399, 870 and 985 packets
from 30sec to the end of simulation respectively, which implies TCP-FSR achieve 150% and 15%
improvement of TCP performance based Reno and TCP-F respectively. The improvement of TCP
performance by TCP-FSR is obvious and significant.

Experiment 2: Network topology of experiment 2 consists of 30 nodes in a 1500m by 300m
rectangular. The nodes move randomly. This experiment is aimed to investigate the correlation
between TCP performance and node�s mean speed, since the motion of nodes is known as the main
reason of route failure. Using the scenario generator tool of Ns, setdest, 50 different movement
scenarios are generated respectively for cases with node�s mean speed of 2m/s, 5m/s, 10m/s, 15m/s,
20m/s and 30m/s. The result of averaged throughput is showed in Fig. 8. Apparently, TCP-FSR
achieves the highest averaged throughput. And throughputs of Reno, TCP-F and TCP-FSR drop as
mean speed is increased, but the decrease is much slight after mean speed reach 20m/s.

Jianxin Zhou / Bingxin Shi / Ling Zou / Hui Shen86 Improve TCP Performance in Ad Hoc Netwoks 87

6 Conclusions

In this paper, we propose two window-based TCP congestion control approachess, simELFN and
TCP-FSR, to improve TCP performance in Ad hoc networks. They can distinguish the essence of
packet loss and avoid causing multiple consecutive dupACKs, achieving better performance than
TCP-ELFN and TCP-FSR respectively, and both of them get a higher performance than Reno.
Simulation results prove their validity.

There are still some open issues of TCP performance in Ad hoc networks. For example, how to
deal with the loss of the explicit notification packets (such as RFN, RRN, ELFN), how to re-
compute TCP state when reconstructed route is different from the original one, and rate-based
congestion control mechanism in paper [7], using heuristic way to distinguish essence of packet
loss in paper [9], i.e. without using explicit feedback notification, etc.

References

[1] http://www.ietf.org/html.charters/manet-charter.html

[2] H. Balakrishnan, V. Padmanabhan, S. Seshan, and R. Katz, �A comparison of mechanisms
for improving TCP performance over wireless links,� in ACM SIGCOMM, Stanford, CA,
Aug. 1996

[3] K. Chandran, S. Raghunathan, S. Venkatesan and R. Prakash, "A feedback based scheme for
improving TCP performance in ad-hoc wireless networks", International Conf. Distributed
Computing Systems, May 1998

[4] G. Holland and N. Vaidya, "Analysis of TCP performance over mobile ad hoc networks",
Mobicomm'99, Aug. 1999

[5] M. Allman, V. Paxson, W. Stevens. �TCP Congestion Control�. RFC2581. Apr. 1999.

0.00 10.00 20.00 30.00
0.00

200.00

400.00

600.00

800.00

Reno
TCP-F
TCP-FSR

throughput

Th
ro

ug
hp

ut
(k

bp
s)

Mean Speed(m/s)

Fig. 8: Mean speed VS Throughput

Jianxin Zhou / Bingxin Shi / Ling Zou / Hui Shen86 Improve TCP Performance in Ad Hoc Netwoks 87

[6] D. Johnson, D.A. Maltz, J. Broch, �The Dynamic Source Routing Protocol for Mobile Ad
Hoc Networks (draft-ietf-manet-dsr-06.txt),� Mobile Ad-hoc Network(MANET) Working
Group, IETF, Nov 2001

[7] J.P. Monks, P. Sinha, and V. Bharghavan, "Enhancements and Limitations of TCP-ELFN for
Ad Hoc Networks", Proceedings of The 7th International Workshop on Mobile Multimedia
Communications (MoMuC 2000) , Oct., 2000

[8] K. Fall, K. Varadhan, ns Notes and Documents, VINT project, http://www.isi.edu/nsnam/ns/
Feb. 2000.

[9] F. Wang and Y. G. Zhang, �Improving TCP performance over Mobile Ad-Hoc Networks
with Detection of Out-of-Order and Response (DOOR)�, Proceedings of Mobihoc�02, June.
2002

