REVISTA COLOMBIANA DE COMPUTACION
Volumen 3, nimero 1
Pags. 21-40

A View on Abstract and Extensible Types*

Lucilia Figueiredo! Carlos Camarao*

Abstract

This paper presents a type declaration construct which provides either a type syn-
onym, a datatype, an abstract type, an abstract type with views, a subtype of an
existing type, or a module (collection of declarations), in the style of modern func-
tional programming languages which provide support for parametric polymorphism. A
view on an abstract type allows pattern-matching on values of this type. Subtyping
can be defined by: i) restriction of the set of values of the parent type through the
use of constructor functions; ii) extension of the functionality of the parent type by
modifying or providing new abstract functions; iii) concrete subtyping of views. These
concepts and the proposed type declaration construct support the idea that programs
are composed of (extensible) type declarations, the latter being formed by function and
value definitions.

1 Introduction

This paper proposes a new type declaration construct that provides either a type synonym,
a datatype, an abstract type, an abstract type with views, a subtype of an existing type,
or a module (collection of declarations), in the style of modern functional programming
languages which provide support for parametric polymorphism. The aim of the proposed
construct is to provide more expressive (modular, extensible) type declarations, by allowing
the definition of:

1. Pattern-matching on values of abstract types, giving these values a first-class status.
2. Overloading of symbols between abstract and representation types.

3. Modules as windows, that is, used simply to control the visibility of names.

4. Subtyping of concrete and abstract types.

The paper presents the motivations behind the proposal and includes examples of type
declarations illustrating the points above. The main focus of this paper is on pattern-
matching on values of abstract types, which is described both formally and informally. A
formalization of the type system for the proposed type declaration construct is not included,
being a subject of ongoing work. The subset of the type system which deals with overloading
is described in [5, 6].

Before describing the proposed type declaration construct, we briefly review existing
approaches for the definition of abstract types in modern functional programming languages;

*This work has been partially supported by FAPEMIG

TUniversidade Federal de Ouro Preto, Departamento de Computacdo, Instituto de Ciéncias Exatas e
Biolégicas, Ouro Preto 35400-000, Brasil, email: lucilia@dcc.ufmg.br

#Universidade Federal de Minas Gerais, Departamento de Ciéncia da Computagcio, Instituto de Ciéncias
Exatas, Belo Horizonte 31270-010, Brasil, email: camarao@dcc.ufmg.br

22 Lucilia Figueiredo / Carlos Camarao

none of these allow values of abstract types to be used in pattern matching. Proposals for
eliminating this restriction [33, 37, 34, 4, 12, 24] usually require the representation type of
an abstract type to be a datatype (which introduces new constructors). As a consequence,
a lot of “wrapping” and “unwrapping” of constructors is necessary, in the definition of the
abstract type functions.

1.1 Abstract types in modern functional programming languages

The first approach we consider is the abstype construct of SML [19, 25], which uses a
datatype as the representation type of an abstract type, and where the definitions of the
abstract type functions are usually implemented by means of operations already defined for
the representation type (this approach has now been superseded by one based on SML mod-
ule system; see below). For example, a definition of an abstract data type of (polymorphic)
sets, with a corresponding union operation, is sketched below (where we assume that union’
is defined on lists):

abstype ’’a set = set of ’’a list with

fun union (set x) (set x’) = set (union’ x x’)

For readers not familiar with SML,’>a set and ’’a list represent polymorphic types
(of sets and lists, respectively) in SML; the use of two quotes is SML’s way of indicating
that type variable ’’a can only be instantiated to types whose values can be compared
for equality. The first occurrence of set in this example is the name of the (polymorphic)
abstract type being defined, and the second occurrence introduces a value constructor —
that, given a list which is an instance of the polymorphic type ’’a list, constructs a value
of the datatype used to represent sets.

In this approach, the representation type must be a new datatype, so as to distinguish
values of the representation type from values of the abstract type. Due to this requirement,
there is a lot of “wrapping” and “unwrapping” of constructors in the definition of the
abstract type functions (wrapping means that a constructor must be explicitly used in order
to construct a value of the abstract type, and unwrapping means that pattern-matching
must be used to obtain a value of the underlying type used in the representation of values
of the abstract type). This can be seen, for example, if we want to define the union of sets
recursively (in SML, [1 denotes an empty list, and (a::x) a list with head a and tail x, so
that (::) has then type a -> ’a list -> ’a list):

abstype ’’a set = set of ’’a list with

fun union (set []) s =s
| union (set(a::x)) (set y) = if a mem y then union (set x) s
else let val set x’ = union (set x) s
in set (a::x’)

Another approach, which avoids this problem, is adopted for example in Gofer and
Hugs [16], by means of restricted type synonyms. The example above can be written in
Gofer/Hugs as follows:

A View on Abstract and Extensible Types 23

type Set a = [a] in ..., union
union :: Eq a => Set a -> Set a -> Set a
union [] s =s

union (a:x) s
| a ‘elem‘ s = union x s
| otherwise = a:(union x s)

For readers not familiar with Gofer (or Haskell[17, 35]), [a] represents a polymorphic
type of lists; the restriction that a can be instantiated only for types whose values can be
compared for equality is indicated in the type of function union, by the “constraint” Eq a,
which indicates that type variable a can be instantiated only for types which are instances of
type class Eq. Type classes specify signatures for overloaded symbols (and may also specify
default definitions); instances of type classes then give a definition for each of these symbols
(except that a default definition, given for some symbol in the type class, is “inherited” if
not explicitly redefined in the instance declaration). In Gofer and Haskell, [1 denotes an
empty list (as in SML), and (a:x) is analogous to (a::x) in SML. ‘elem‘ is Gofer/Haskell’s
way of transforming prefix to infix notation (i.e. a ‘elem‘ s is the same as elem a s); the
reverse transformation is done by enclosing an operator between parentheses (e.g. (:) a x
is the same as a:x). In the sequel, we will use a Haskell-like notation (see e.g. [3, 35, 14]).

The purpose of a restricted type synonym is, as its name indicates, to restrict the use of
values of this type to a particular set of functions. Explicit type annotations must be used
to indicate that a parameter value is (or must be) an argument of the restricted type. Also,
in the definitions of the abstract type functions, values of the restricted type are considered
as values of the representation type. Outside, values of these types can only be used by the
functions named after in (in the declaration of the restricted type).

A limitation of this approach is that, in Gofer and Hugs, overloaded operations cannot
be defined for both the abstract and the representation types. For example, the equality
operator (==) cannot be defined to compare values of the abstract type Set a, because it
is already defined for lists.

Other approaches for the definition of abstract types use the module system, as for
example in Haskell and SML. In Haskell, representation types are required to be datatypes
(otherwise representation and abstract types would be synonymous). An abstract type is
defined by not exporting the constructors of a datatype, so that only the exported functions
can be used to operate on values of that type. As with the abstract type construct in SML,
this approach uses explicit constructors in the definition of the abstract type functions, so
wrapping and unwrapping is a problem.

In SML, wrapping and unwrapping is avoided in the approach based on the module
system. A signature (description of the interface of a module) can be used to abstract from
the representation type of a module (called structure). In such a signature, only the (so-
called) arity of a type can be specified, in order to hide the representation type. It should be
noted that, in this approach, the module system is not simply used to control the visibility
of names (that is, to specify which names defined in a module are visible outside, and which
names visible outside can be used inside). It is used also to change the types of symbols.

The definition of abstract types using the module system, however, also does not allow
pattern-matching on values of abstract types. Chris Okasaki’s proposal [24] for extending
SML solves this problem, but for the definition of an abstract type it requires that a new
datatype be defined as the representation type, and wrapping and unwrapping becomes
again a problem.

24 Lucilia Figueiredo / Carlos Camarao

While pattess-matclelng for values of abstract type amd the notion of views bhave alpeacdy
b widlely discussed, & coastruet supporting this potion has, soawewlat surpiasingly, never
beefore Been combined with a coamtract for the definition of abstract types (as dease in this
paper], The econstruct propoesed in this paper alse allows more than ome view assockated to s
given abstract type. The representation can be changed without changing tle abstract type
view, in which case wsers won't have to modify their code that uses tle absteact type. This
enables an casy and wremental extension of tvpes, with propagation of type information.

We proceed by presenting the proposed abstract syntax of the type declaration sonstrct
(Section 2.1} and several examples that illustrate its use (Section 2.2}, Section 3 gives the
semnantics of patter-matching on values of abstract types. Seetion 4 presonts more details
about related work and Section 5 conclhades.

2 Proposal

We firstly present the abstract syntax of o mini-langusge with the proposed type declara-
tion constrct [Section 2,1), and then deseribe it by means of several illustrative cxamples
[Section 2.2).

2.1 Abstract Syntax

A program in our mini-language consists of a set of type declarations, one of which should
eoditain the program’s main function, Dependencies between these declarations are specified
by import (use] clavses, which are omitbed here for simplicity.

The abstract symtax of the language is presented in Figure 1, where meta-svinbols are
written in a gray box (a2 in o= or |], to avold confusion,

Metn-varinble o is used for type or constmactor vacinbles snd C for type constructors,
Each type constrector O in © 7y ... 7y and each type variable a in oo ., 1 i85 nssonsed
to have o orty, which is the valoe of w1t s olzo sssomed thet theee is o function type
comstructor (=}, which hos arity 2 and is used in infix potation, A tyvpe varisbie with an
arity greater than gero is ealled o constructor variable, Meta-vadable £ denotes o constructor
variable; meta-variabde ¢ denotes the pane of o tenmn variable or function, amd meta-sanabile
e denates vl constrisctor,

2.2 Pattern-matching on abstract values

For pattern-matching on values of abstract types, an abstroction firnefion is uwsed, to cowvert
valucs of the representation type to values of the abstract type. As an example, an ab-
stract type of complex numbers ean wse cortesinn coondinstes to represent. comples mumbers
and pormit potterm-matching on constructors that use polar coordinetes. In this case, the
ahstraction function converts carfesian to polar osordinntes,

The redation from shstract to representation salees is, in general, 8 ooe-to-many relation
(= Figure 2, taken from [15], where the abstraction function is enlled o metrieee function)

o the representation type may bave valos with e sbetract counterpurt, For exsme-
ple, for an abstract type Baticnal with reprosentation type Integer = Integer, all
walwes e, 33, where i is an imteger, have no abstract counterpart; DateCfYear with
reprosentation tvpe Day x Honth ® Year may have several vilues with oo abstract
connterpart (e.g., with Year = Integer).

A View on Abstract and Extensible Types

Program

Type declaration

View

Lisal Diehinition
Diefinitbon list
Himding

Simple type
Dlata tyvpe
Pattern

|":'.;'||:'-| ot [N]

U Jist

n

i
L
i

l|.|

L]

| BpFr

tvpe oy ooy L= | =
|[inB] [V] W]

s d | abs B |

where L [1V |

Bl Dl LL

p=e[W]

0 T e T UL Thsaa T

) T 11 [|':". Tk
2] epr wve po

r| Ape | e | let din
casgeonl a| x| £ox | Self.a
pere [W] | ad

Figure 1: Abstract Syntax of Type Declarations

25

e the representation type may have more than one value with the same abstract coun-
terpart. For example, for type Rational, (m,n) and (m',n’) represent the same

number if mxn'=m/xn; for a queue a; - - - apbm,

([a1, .- yanl,[b1y .-, bm]), values ([],[b1,...

same queue.

--+- by represented as a pair of lists
,bm]) and ([by,...,b1],[]) represent the

When writing an abstract type definition, an abstract value should always be guaranteed
to have a valid representation. When more than one representation exists for the same
abstract value, an abstraction function specifies one of them as canonical (cf. section 2.3.1).

The abstract type definition proposed in this paper is based on that used in Gofer and
Hugs, but also allows for the possibility of defining views for the abstract type, thus allowing
pattern-matching on values of abstract types.

The type of values of the representation type is synonymous with that of the abstract

Ffumnctionm

abstraction

Abstract tvyype

T T T

WA S N R BT

Figure 2: The abstraction function, from a representation to an abstract type

Representation type

26 Lucilia Figueiredo / Carlos Camarao

type in definitions occurring inside the abstract type definition (cf. Section 2.3). Such a value
is interpreted as a value of the abstract type, unless i) there is an explicit type annotation
that indicates that it is a value of the representation type, or ii) the value is an argument
of an abstract type constructor function (cf. section 2.3).

2.3 Abstract versus Concrete

We present first a very simple and widely used example, of a polymorphic type of stacks,
using our proposed type declaration construct:

type Stack a = [a]
cons empty = []
in push = ()

pop = tail
top = head
isEmpty = null

In an abstract type declaration, constructor functions are defined after keyword cons
and transformer and reader functions are defined after in.

Constructor functions create a value of the abstract type from values of other types given
as arguments. They have type t; — to — ... — t,, — t, where ¢ is the abstract type and
t; #t, for all ¢ = 1,...,n. Transformer functions are such that at least one of the t;’s (in
t1 >ty — ... > t, — t) is equal to t. Reader functions have type t; — to — ... — t, —
tn+1, where tn+1 7& t.

Let ¢’ be the representation type of t. In the abstract type definition, values of type t’
are typed as values of the abstract type t. The substitution of ¢ for ¢’ occurs textually, after
type inference, and is called the the rule of textual substitution of the abstract for the rep-
resentation type. For example, in type T a = [[a]] in f xss = concat (map concat
xss), type [[[al]] — [a] of £ is transformed to [T al (and not to e.g. T [al). This can
be overridden by means of an explicit type annotation for £. An abstract function type can
include ¢’ in its signature only if a type annotation is explicitly specified or ¢’ is an argument
of a constructor function of the abstract type.

The only constructor function of type Stack a is empty, which creates an empty stack.
Transformer functions push and pop respectively insert and remove a value from the top of
a stack. push has (is inferred to have) type a -> Stack a -> Stack a and pop has type
Stack a -> Stack a. top gives the value at the top. It is a (so-called) reader function.

The above definition patently specifies the identity isomorphism between stack and list
types. In spite of this, values of type Stack a cannot be used in pattern-matching (yet).
For pattern-matching, a view must be given:

type Stack a = [a]

cons empty [1

in push = ()
pop = tail
top = head

isEmpty = null
is EmptyStack | Push a (Stack a)

A View on Abstract and Extensible Types 27

The constructors of values of (the view of) type Stack a, namely EmptyStack and Push,
can be used only for pattern-matching. For example, functions pop and top could as well
be defined by pop (Push a x) = x and by top (Push a x) = a (a more complete and
careful definition would also give proper error indications for the cases of popping from and
accessing the top element of an empty stack).

A note on terminology: EmptyStack and Push are constructors of values of (a view of)
type Stack a, whereas empty is the only constructor function of this type (in contrast to
constructors of abstract values, constructor functions may be used in expressions that are
not patterns).

Constructors EmptyStack and Push have corresponding constructors of the representa-
tion type, respectively [] and (:). This correspondence is inferred automatically from the
types of the constructors of the abstract and representation types (cf. section 3). Informally,
the correspondence is automatically inferred whenever, for each constructor of the abstract
type of a given type, there exists a unique corresponding constructor of its representation
type with “the same” type (here “the same” considers that the abstract type and its rep-
resentation type are identical). When this correspondence exists, an abstraction function
(which would be trivial in the example above, with bindings [] = EmptyStack and (:) =
Push) does not need to be defined.

Abstract values should always be constructed so that it is guaranteed that they have a
valid representation. This ensures that pattern-matching on abstract values will never fail
because a value has been created with no correct abstract view. Consider, for example, the
following definition of type Rational:

type Rational = (Integer, Integer)
cons rat x y = reduce (x * signum y) (abs y)
where reduce _ 0 = ..invalid rational number
reduce x y = (x ‘div‘ d, y ‘div‘ d)
d=gcd xy
is Rat Integer Integer

Function rat, which has (is inferred to have) type Integer -> Integer -> Rational,
avoids having more than one representation for the same abstract value. In an expression
like let Rat x y = rat 4 2 in..., for example, x and y are equal to 2 and 1, and not to
4 and 2 (and let Rat 4 y = rat 4 2 in... will yield a pattern-matching failure).

Using our type declaration construct, a type declaration can give, in a simple and uni-
form way, either a type synonym, a datatype, an abstract type, an abstract type with views,
a subtype of an existing type (discussed in Section 2.4), or a module (collection of decla-
rations). The absence of constructors and of bindings for abstract type functions indicates
a transparent (synonymous) type definition, as in type Stack a = [a]. In the absence
of the type equality and bindings, we have a data type definition, as in type Stack a is
EmptyStack | Push a (Stack a). In this case, constructors can be used both for pattern-
matching and for construction of values of the data type.

In the absence of constructors and type equality, we have bindings, forming a module
(a collection of declarations). A where clause may be used in a type definition, for local
definitions (of internal use only). Declarations that do not occur in a where clause are, on
the other hand, visible outside (a declared name, with its type, is said to be exported).

28 Lucilia Figueiredo / Carlos Camarao

2.3.1 Abstraction Function

The following simple example illustrates the use of an abstraction function to convert carte-
sian to polar coordinates of complex numbers. The definition of the abstract type Complex
uses cartesian coordinates for the representation but a polar view (for pattern-matching):

type Complex = (Float, Float)
cons cart x y = (x,y)
is Pole Float Float
abs (x,y) = Pole (sqrt(x"2 + y~2)) (atan2 y x)

Consider now an example where there exist more than one valid representation for the
same abstract value. In this case, an abstraction function must be defined in order to choose

a given (so-called canonical) representation. A polymorphic type of queues, defined below,
provides an illustrative example:

type Queue a = ([a],[a])

cons emptyQ = (1,01
in enq a (f,r) = (£, a:r)
deq ([1,[1) = error ...
deq (a:f, r) = (a, (f,r))
deq ([1, r) = deq (reverse r, [1)

For example, values ([1,[2,1]) and ([1,2], [1) represent the same queue. In such case,
a canonical representation should be defined for pattern-matching. The significance of the
abstraction function specifying one value in the representation as canonical can be seen in
the following example:

type Queue a = ([a],[al)

cons emptyQ = (01,0
in enqa (f,r) = (f, a:r)
deq EmptyQ = error ...

deq (Deq a q) = q
is EmptyQ | Deq a (Queue a)

abs ([1, [1) = EmptyQ
([0, r) = abs (reverse r, [])
(a:f, r) = Deq a (f, 1)

For example, ([1,2],[]1) is the canonical representation for a queue with 1 in the front
and 2 (as the only other element) in the rear. This is necessary so that the same bind-
ings are produced in pattern-matching on, for example, the queues created by expressions
(enq 2 . enq 1) emptyQ and (deq . enq 2 . enq 1 . enqg 0) emptyQ.

We can now define, for example, a breadth first traversal on trees as follows:

type Tree a is EmptyT | Node (Tree a) a (Tree a)
breadthFirst t = traverse (eng t emptyQ)
where traverse EmptyQ =[]
traverse (Deq EmptyT q)
traverse (Deq (Node t a t’) q)

traverse q
a: traverse((enq t’.enq t) q)

A View on Abstract and Extensible Types 29

2.3.2 More than one view

This section illustrates the definition of more than one view for the same abstract type,
which can be mixed together. Consider the following example of complex numbers, with
two views (cartesian and polar), each with its own abstraction function:

type Complex = Cart (Float, Float) | Pole (Float, Float)
cons cart x y = Cart (x,y)
pole r t = Pole (r,t)

is Cart Float Float

abs (Cart (x,y))

(Pole (r,t))

is Pole Float Float

abs (Cart (x,y))

(Pole (r,t))

Cart x y
Cart (r*cos t) (r*sin t)

Pole (sqrt(x"2 + y~2)) (atan2 y x)
Pole r t

We can now write, for example:

(Cart x y) + (Cart x’ y’) = cart (x+x’) (y+y’)
(Pole r t) * (Pole r’ t’) = pole (r*r’) (t+t’)
magnitude (Pole r t) = r

abs z = cart (magnitude z) O

Note that operations on complex numbers can now choose between a cartesian or polar
view of complex numbers (for example, cartesian coordinates have been chosen for addition
and polar coordinates for multiplication of complex numbers).

2.4 Subtyping

Subtyping of concrete types can be based on an explicit rule for each type constructor,
as usual, or on overloading of value constructors. In this last case, each constructor of a
subtype is also a constructor of its parent type. Subtyping of concrete types by overloading
of value constructors (called constructor overloading) is the subject of Section 2.4.2.

Subtyping of abstract types can be based on: i) restriction of the set of values of the
parent type (through the use of the functions defined in the abstract type, as illustrated
by type Nat below), ii) extension of the functionality of the parent type by modifying or
providing new transformer or reader functions or iii) subtyping of views. The subsumption
property holds in all cases: a value of the subtype may be used whenever a value of its
parent (super) type may be used.

Our first example of subtyping is type Nat[37, cf. section 2], which is a subtype of Int
that avoids the inefficient datatype representation type Nat is Zero | Succ Nat.

type Nat <= Int
cons zero = 0
in succ:: Int -> Nat
succn | n > 0 = n+l
is Zero | Succ Nat
abs 0 = Zero
n = Succ(n-1)

30 Lucilia Figueiredo / Carlos Camarao

In contrast with the case in which a new abstract type is defined (with the use of = instead of
<=), values of type Nat can be used whenever values of type Int can. The explicit signature
for succ is used to allow, for example, succ 3 instead of succ(succ (succ (succ zero))).
The latter form is still allowed, as Nat is a subtype of Int. The condition n>=0 guarantees
that no invalid representation is created for a value of type Nat.

A programmer can now write a recursive addition on values of type Nat as follows.
Considering that the binding for (+) below involves a recursive definition, we obtain (+)::
Nat -> Nat -> Nat.

Zero + n =n
(Succ n’) + n = succ(n+n’)

A more illustrative example is given next. Simple monads are defined and used to write
extendable modular interpreters, without the inconvenience of wrapping and unwrapping
values of datatypes (cf. [38, 3]). We start with a trivial monad:

type TM a =T a
cons return x = X
in Tx>f =1fx

is T a

return has type a -> TM a (note that return is a constructor function). The type inferred
for (>) isTM a -> (a -> b) -> b, which is more general than intended type TM a -> (a
-> TM b) -> TM b (this intended type could be explicitly specified, if desired).

An exception monad ExcM a (where a computation may either raise an exception or
return a value) may be defined as an abstract subtype of TM a (ExcM a is an extension of
TM a, providing a new constructor function):

type ExcM a = Exc a

cons return x = Return x
in (Raise e) > f = Raise e
(Return x) > f = f x

raise = Raise
is Exc a

where type Exc a is Return a | Raise Exception
type Exception = String

In this example, the definition of type Exc a is local to the definition of ExcM a; it is used
both as the representation type and as a view of type ExcM a.

Note that Return and Raise — used in the body of functions return and (t>) in the
example above — are used as constructors of the representation type (Exc a), which is later
converted to the abstract type, to give the types of return and (), by the rule of textual
substitution of the abstract for the representation type (Section 2.3). The types of above
definitions of return and (>) are, respectively, a -> ExcM a and ExcM a -> (a -> ExcM
a) -> ExcM a.

A state monad (where a computation accepts an initial state and returns a pair with a
value and a final state) may be defined as follows:

A View on Abstract and Extensible Types 31

type StateM a State = State -> (a, State)
cons (return x) s = (x, s)
in (f > g) s = (g x) s’
where (x, s’) = f s

When the representation type is a function type, as in the above example, the types of
the abstract type functions are inferred with the assumption that function definitions are
pointwise. Thus, for example, in the above definition, the type inferred for return is a ->
StateM a State. The type inferred for (>) is (State -> (b,c)) -> (b -> ¢ -> (a,
State)) -> StateM a State, a more general type than intended type StateM a State
-> (a -> StateM a State) -> StateM a State, which could be explicitly specified, if
desired.

2.4.1 Overloading

An important characteristic of our type declaration construct is the possibility of considering
the use of names relative to a certain type (constructor) — i.e. names defined in a certain
type declaration. Calls to symbols defined in specific types use the notation ¢. f, where ¢ is a
type constructor and the definition of f occurs inside t’s definition. This is called a qualified
function call. A chosen symbol (Self) may be used instead of the name of the type being
defined.

The following example provides a way to view a counter as a state monad, where State
is an integer, initialized to zero at the start of a computation and incremented with tick:

type CounterM <= StateM Int ()
cons tick s = Self.return () (s+1)

The notation Self.return refers to the definition of return given in the definition of
StateM, which is inherited by CounterM.

We now define simple modular monadic interpreters for arithmetic expressions using ab-
stract types, with types of arithmetic expressions defined stepwisely, by extension of simpler
ones. The interpreter uses the possibility of extending previous definitions, does not involve
wrapping and unwrapping of constructors of newtypes, and uses overloading. Overloading is
as supported by system CT[5], which does not require class or instance declarations, allowing
the introduction of overloaded definitions in usual let-bindings. We define:

type TExpr a is Con a
type TEval m a = TExpr a -> m a
cons eval (Con x) = m.return x

type TIEval m = TEval m Int

Considering that the type of m.return is a -> m a, the type of eval defined above can
be inferred to be TEval m a.!

11f, instead of m.return, the definition of eval used just return, then this could cause a type error, if the
type of return was not a -> m a. This would be the case if return is overloaded for different monad type
constructors m. In this case, m would have a constrained polymorphic type: given standard definitions of
return for different monad type constructors, the constrained polymorphic type of return would be written
in system CT as: { return: a -> m a}. a -> n a.

32 Lucilia Figueiredo / Carlos Camarao

An abstract subtype of TIEval can be defined as follows, where contravariance of the
function type constructor is used, as Expr is a (concrete) supertype of TExpr Int:

type Expr is Con Int | Div Expr Expr
type Eval m <= TIEval m = Expr -> m Int
cons eval (Div e e’) =
(eval e) m.>)a.
(eval e’)m. >Ab.
m.return (a ‘div‘ b)

Type Eval m inherits all abstract function equations defined for TIEval m, and extends
it with one more. Its representation type (Expr -> m Int) is a subtype of the representation
type of TIEval (namely, TExpr Int -> m Int).

The trivial, exception and state monads can be extended to provide a “way out” of
monads, which means in these cases simply showing returned values. These extensions can
be given as follows, using show:

type TM’ a <= TM a
in show (T x) = "value: " ++ show x

type ExcM’ a <= ExcM a
in show (Raise e) = "exception: " ++ e
show (Return x) = "value: " ++ show x

type CounterM’ <= CounterM
in show f = "value: " ++ show x ++
"count: " ++ show s
where (x, s) = f 0

Supposing that show has type a -> Int, the types of each definition of show above would
be, respectively, TM’ a -> String, ExcM’ a -> String and (Int -> (a,b)) -> String?

Given an expression e of type Expr, the results of the evaluator eval for arithmetic
expressions, defined in Eval m, can be shown by annotating Eval TM’ as below:

show(eval e:: Eval(TM’ Int))

The type annotation defines parameter m of Eval, making the use of the monadic op-
erations unambiguous in the definition of eval. Function eval can be easily defined so as
to call raise in case of division by zero, and call tick to count the number of divisions
performed.

Monadic operations can be combined. For example, the exception and state monads can
be combined by the following distinct monad transformers:

2In fact, show would typically have a constrained polymorphic type, written in system CT as { show:
a -> String}.a -> String (where type variable a is implicitly quantified). This would cause the types of
each definition of show above to be, respectively (with type variables implicitly quantified):

{ show: a -> String }. TM’ a -> String
{ show: a -> String }. ExcM’ a -> String
{ show: a -> String }. (Int -> (a,b)) -> String

A View on Abstract and Extensible Types 33

type ExcMT m a = m (ExcM a)
cons return = (m.return) . (ExcM.return)
in p>f=pmnp> £
where f’ (Raise e) = m.return (raise e)
£’ (Return x) m.return (ExcM.return (f x))
promote g = g m.> (Ax. Self. return x)

type StMT m a State = State -> m (a, State)
cons return x = (m.return) . (StateM.return x)
in (p > f) s = m. return ((p StateM.> f) s)
promote g = g StateM.> (Ax. Self. return x)

2.4.2 Constructor Overloading

Subtyping originated from overloading of value constructors is illustrated in this section by
considering a binary search tree implemented by means of a binary tree:

type BTree a is Leaf | Node a (BTree a) (BTree a)
type BSTree a = BTree a

cons leaf = Leaf
in insert ... = ...
delete ... = ...

size Leaf = 0
size (Node a t t’) = 1 + size t + size t’
is BTree a

Instead of introducing new constructors, the view may specify existing constructors of
another view or datatype. This overloading of constructors indicates that BSTree a is a
subtype of BTree a, based on interface subtyping. Note that there is no wrapping and
unwrapping here, i.e. there is no need to use explicit constructors to convert between values
of type BTree and BStree. Type BTree might also be defined locally, i.e. in a where clause
of type BSTree.

A function to return the so-called n-th element of the search tree can be defined as

follows:

gElem n Leaf = error ...
gElem n (Node v t t’)
n
n

| n < st gElem (n-1) t
| > st = gElem (n-1-st) t’
| n==st =v

where st = size t

Assuming that size is defined only for BSTree, the type of gElem is Int->BSTree a-> a.

34 Lucilia Figueiredo / Carlos Camarao

2.5 Changing the Representation Type

Normally, one cannot change the representation of a type without having to modify every
piece of code that performs pattern-matching on constructors of values of that type. No
longer: with pattern-matching on abstract types, we can change the representation, modify
and provide new, more efficient abstract functions that operate on the changed representa-
tion, and simply provide an abstraction function corresponding to the new representation.
If the abstract view can remain the same, users will not have to modify their code.

Suppose we want to change the representation of the binary search tree, by adding an
extra field to hold the size of the tree. Then, we can maintain the same abstract view,
and change only abstract type functions, as below; for example, function gElem, defined
previously, need not be modified.

type BSTree a = L | N a (BTree a) (BTree a) Int
cons leaf = L
in insert ... = ...
delete ...
size L = 0
size (Nat t’>n) =n
is BTree a
abs L = Leaf
Natt’n=DNode at t’

3 Semantics of Pattern Matching

This section describes the semantics of pattern-matching on (view) values of abstract types.
Following the Haskell report [17], the semantics of pattern-matching is defined by translation
to a simpler case expression; we thus need to be concerned only with the translation of case
expressions. We consider the semantics of a case expression ey in the following form, to
which more general case expressions may be semantically translated (c.f. [17]):

case = of
p —->e
>

where z is a variable, p is a pattern of a given (view of) abstract type T, and e, e’ are
expressions.

The semantics is based on representing values of the abstract type as values of the
representation type, and on constructing values of the abstract (view) type only for pattern-
matching, using the abstraction function defined for that view. Letting C' be a meta-variable
for type constructors and p = C' x; - - - x,,,, for some variables x1,...,x,,, the semantics of
eo is given as follows (notation e[z; :— e;] denotes the textual substitution of e; for x; in e):

[eo] = case abs(z) of {
Cei-- e, ->case e1 of {
/
xry1 -> ... case e, of _
xh, => elr; — xi] "] }

1)

A View on Abstract and Extensible Types 35

Letting p = C x1 - - - z,, does not impose any restrictions since, for any other patterns
Ply- - Pn, We have:

[case © of {Cp1---pn > & - > €'}] =
case z of {
Cx1--xn -> case z; of {

p1 => ...case zn of {
pn => [e];
- > [T}
- > [T}

- > [T}

As already noted, in some cases it is not necessary that the abstraction function be
explicitly defined. These are cases where there exists a simple isomorphism between the
abstract and representation types, in the sense that, for each constructor of the abstract
type of a given type, there exists a unique corresponding constructor of its representation
type with the same type. In such a case, whose occurrence is easy to be checked statically,
the abstraction function is implicitly defined by abs(C}x;1 - - 2i,;) = Ci@in - Ty for each
i=1,...,n, where {C;} and {C/} (for i = 1,...,n) are respectively the sets of constructors
of type T and its representation type, and C = CY%, for some 1 < k < n. Of course, if
no such unique correspondence exists, the abstraction function must be defined explicitly.
For example, in type X is A | B | C Integer, the fact that A and B have the same type
requires the definition of an abstraction function in the definition of an abstract type.

It should also be noted that an implementation is not expected to use this semantics
directly, since that would generate inefficient code. A more efficient implementation can use
the same general ideas explored in e.g. [37]. In particular, the implementation of pattern-
matching can be based on values of the representation type whenever no abstraction function
is defined, or when the abstraction function is defined and its right-hand side does not use
functions, but only variables and constructors. For example, the abstract view of Rational
is isomorphic to its representation type (Integer, Integer) (no abstraction function is
defined), and the translation of:

let Rat(x,y) = rat(x,y) in ...

can (ultimately®) be given as follows:

case rat(x,y) of
(x,y) > ...

It is easy to use the representation type and a canonical representation to perform
pattern-matching on values of the representation type, if the abstraction function is de-
fined by using only variables and constructors, as illustrated by the following example. The

translation of:
size q = case q of

EmptyQ -> 0
Deq a g-> 1 + size q

3We say ultimately because let-bindings are (at least in Haskell) lazily evaluated and case expressions
are strict.

36 Lucilia Figueiredo / Carlos Camarao

can be given as follows:
size q = case canonical q of

a, m —>o

(f, a:r) =1 + size (f,r)

where canonical is obtained directly from the abstraction function:

canonical ([1, [1) = (0, [
([1, r) = canonical (reverse r, [])
(a:f, r) = (a:f, r)

More formally (cf. page 15), if the definition of abs specifies a sequence of equations
Cixi1--xig, = Ciejr ¢, , foreach i = 1,...,n, where {C;} and {C]} are respectively the
sets of constructors of type T and its representation type, and e;; - - - e;,, are variables (for
it =1,...,n), then function canonical can be defined, in order to perform pattern-matching
on values of the representation type, from the definition of abs, simply by substituting
canonical for abs and C; ;1 ---x;, for Cl e;1 ---es,. Otherwise (ie. if in Cf e;1 - - e,
some expression is not a variable), as for example in the case of complex numbers (section
2.3.2), a simple implementation of pattern-matching may be based on pattern-matching on
values of the abstract type and on the abstraction function. For example, the translation of

(Pole r t) * (Pole r’ t’) = pole (r*r’) (t+t’) can be given as follows:

x * y = case abs(x) of
Pole r t -> case abs(y) of
Pole r’ t’ ->
pole (r*r’) (t+t’)

4 Related Work

The first effort in order to reconcile data abstraction and the definition of functions by
pattern matching was made with Miranda laws [33]. Laws are equations relating the data
constructors (of a data type), which are interpreted as rewriting rules defining a canonical
representation for values of the defined type. Laws were not included in the final version
of Miranda, because of well-known problems in equational reasoning, as discussed in [34,
4]. Besides that, it is not very convenient for pattern matching (cf. Gostanza, Pena and
Nunez[12]).

Wadler’s views [37] allow for the definition of arbitrary mappings between the imple-
mentation of an abstract type and views supporting pattern matching. For each view, two
functions are defined: from the view to the representation (in) and from the representation
to the view (out). These functions must be inverses of each other (they must be injec-
tive), which is very restrictive, but necessary in order to make equational reasoning feasible
[BurtonCameron93]. There is also some loss of abstraction, since one of the views always
correspond to the actual representation type and thus the representation cannot be hidden.

To solve the problems with equational reasoning in programs using laws, Thompson [34]
distinguishes between two different uses of a data constructor: as a pattern and as a function
that constructs a value of the viewed type.

Burton and Cameron [4] implemented this idea, making this distinction explicit into the
source code of programs: constructors and the normalizing function receive different names.

A View on Abstract and Extensible Types 37

Their work unifies the mechanisms of laws and views, while avoiding their problems. Pattern
matching is viewed as a bundling of case recognition and component selection functions,
instead of a method for inverting data construction. Only a mapping out of a view needs to
be specified, eliminating the mentioned restriction of requiring an isomorphism between the
representation type and the view. They show that equational reasoning can then be used.

The approach adopted for the definition of views in this paper is very similar to Burton
and Cameron’s [4]: view constructors are explicitly distinguished from corresponding func-
tions and only an abstraction function from the representation to the view is required (or,
in our work, is not required if there exists a simple isomorphism between the view and the
representation type). However, in all these works, views are defined for datatypes; in other
words, the representation type of an abstract type is required to be a new datatype. To hide
the representation type, Burton and Cameron use the module system (as in Haskell), with a
special notation for exporting view constructors so as to restrict their use to patterns only.

Gostanza, Pefia and Nutiez’s work [12] proposes a more radical extension to the notion of
views. In their work, pattern matching can involve arbitrary computations (and thus guards
can be used to control pattern matching). “Partial” views can be defined, and a definition
of a function over an abstract type can use constructors belonging to different views. As
with other approaches, a new datatype is required for the definition of an abstract type.

The combination of subtyping with parametric polymorphism and type inference has
been the subject of a great number of studies [9, 11, 10, 31, 20, 8, 1, 32, 13, 36, 18, 27, 28, 30,
26, 21]. However, there exist few practical language implementations nowadays that use type
inference algorithms and support parametric polymorphism and subtyping (see e.g. [29, 22],
which are the basis of the languages OCAML([7] and O’Haskell[23, 2], respectively). The
main reasons seem to be related to the inefficiency of these algorithms, the fact that types,
even for relatively simple expressions, can become excessively long and cumbersome to read,
and the use of restrictions in order to tackle the problem of type inference. This paper has
focused on pattern-matching of abstract values. A formalization of the type system and the
study of type subtype inference in the context of our type declaration construct are subjects
of ongoing work.

5 Conclusion

This paper presents a type declaration construct which provides, in a simple way, either a
type synonym, a datatype, an abstract type, an abstract type with views, a subtype of an
existing type, or a module (collection of declarations). It supports the definition of views
for an abstract type, thus allowing pattern matching on values of abstract types. Several
examples illustrate the use of the proposed construct.

It has been exposed clearly in this paper the relation between representation and (views
of) abstract types, clarifying when and why it is necessary to define an abstraction function.

Problems with existing constructs for the support of abstract types in modern program-
ming languages, which were summarized in this paper, are avoided by the proposed solution.

The proposed construct has a simple and efficient implementation, according to the
simple semantics of pattern-matching for values of abstract types that has been presented.
It can use pattern-matching on constructors of the representation type whenever there is
an isomorphism between (the relevant view of) the abstract type and its representation
type; the decision of when such an isomorphism exists is based directly on the abstract type
definition.

The proposed type declaration construct facilitates the construction of modular pro-
grams, as well as their extension and modification. When a datatype (implementation) is

38 Lucilia Figueiredo / Carlos Camarao

changed, all program parts that perform pattern-matching on constructors of values of that
type need to be modified. With abstract type definitions, a representation may be changed
without the need for these modifications, but no pattern-matching can be performed on
values of this type. An abstract type with a view changes this situation. Its representation
(implementation) may be changed without imposing changes on the user’s code that use the
abstract type, if the view is not changed.

The definition of a subtype relation between concrete types can be based on i) an explicit
rule for each type constructor, as usual, or ii) on overloading of value constructors. For
abstract types, on the other hand, the subtyping relation is based either on i) restricting
the set of values of the parent type (through the use of the abstract type functions), or
ii) the extension of the functionality of the parent type by modifying or providing new
transformer or reader functions, or, finally, v) on concrete subtyping of views (interfaces).
The subsumption property holds in all cases: a value of the subtype may be used whenever
a value of its parent (super) type may.

Further work involves extending system CT [5, 6] in order to provide full support for the
type declaration construct presented in this paper, as well as implementing a language with
this construct. This will provide scope to obtain more experience on the expected advantages
of this construct, in particular with respect to the ability of using pattern-matching on values
of abstract types and changing the implementation of an abstract type without changing its
views, and of modular extension of programs through abstract subtyping.

References

[1] Alexander Aiken and Edward L. Wimmers. Type inclusion constraints and type in-
ference. In Proceedings of ACM Functional Programming Languages and Computer
Architecture, 1993.

[2] R. Bailey. Functional Programming with Hope. Ellis Horwood, 1990.

[3] Richard Bird. Introduction to Functional Programming using Haskell. Prentice-Hall,
1998. 2nd ed.

[4] F. Warren Burton and Robert D. Cameron. Pattern matching with abstract data types.
Journal of Functional Programming, 3(2):171-190, April 1993.

[5] Carlos Camarao and Lucilia Figueiredo. Type Inference for Overloading without Re-
strictions, Declarations or Annotations. Proc. of FLOPS’99, LNCS 1722, pages 3752,

1999.
[6] Carlos Camardao and Lucilia Figueiredo. Type Inference for Overloading.
Technical report, UFMG, 2001. Submitted for publication. Available at

http://www.dcc.ufmg.br/~camarao/ct-tech-rep.ps.

[7] Guy Cousineau and Michel Mauny. The Functional Approach to Programming. Cam-
bridge University Press, 1998.

[8] Pierre-Lous Curien and Giorgio Ghelli. Coherence of subsumption: Minimum typing
and type-checking in F<. Mathematical Structures in Computer Science, 2:55-91, 1992.
Also in Theoretical Aspects of Object-Oriented Programming: Types, Semantics, and
Language Design, The MIT Press, 1993.

[9]

A View on Abstract and Extensible Types 39

You-Chin Fuh and Prateek Mishra. Type Inference with Subtypes. In 2nd European
Symposium on Programming (ESOP’88), pages 94-114, 1988. Springer-Verlag LNCS
300.

You-Chin Fuh and Prateek Mishra. Type inference with subtypes. Theoretical Computer
Science, 73(2):155-175, 1990.

You-Chin Fuh and Prateek Mishra. Polymorphic Subtype Inference: Closing the
Theory-Practice Gap. In Proceedings of TAPSOFT’89, volume 2, pages 167-183, 1997.

Pedro P. Gostanza, Ricardo Pena, and Manuel Nutiez. A New Look at Patternn Match-
ing in Abstract Data Types. ACM SIGPLAN International Conference on Functional
Programming, pages 110-121, May 1996.

My Hoang and John Mitchell. Lower bounds on type inference with subtypes. Confer-
ence Record of POPL’95: the 25th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 176185, 1995.

Paul Hudak. The Haskell School of Expression: Learning Functional Programming
through Multimedia. Cambridge University Press, 2000.

Cliff B. Jones. Systematic Software Development using VDM. Prentice-Hall, second
edition, 1990.

Mark Jones et al. Hugs98. http://www.haskell.org/hugs/, 1998.
Simon Peyton Jones et al. The Haskell 98 Report, 1998. http://haskell.org/definition.

Simon Marlow and Philip Wadler. A practical subtyping system for Erlang. In Pro-
ceedings of ICFP’97: the ACM SIGPLAN International Conference on Functional Pro-
grammsang, pages 136-149, 1997.

Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML. MIT
Press, 1989.

John Mitchell. Type inference with simple subtypes. Journal of Functional Program-
ming, 1(3):245-285, July 1991.

Johan Nordlander. Pragmatic Subtyping in Polymorphic Languages. In Proceedings of
ICFP’98: the ACM SIGPLAN International Conference on Functional Programming,
1998. volume 34(1) of ACM SIGPLAN Notices, pages 216-227, June 1999.

Johan Nordlander. Polymorphic Subtyping in O’Haskell. In Proceedings of the APPSEm
Workshop on Subtyping and Dependent Types in Programming, 2000.

Johan Nordlander. Polymorphic subtyping in o’haskell. In Proceedings of the APPSEm
Workshop on Subtyping and Dependent Types in Programming, 2000.

Chris Okasaki. Views for Standard ML. In Proc. 1998 ACM SIGPLAN Workshop on
ML, 1998.

Lawrence Paulson. ML for the Working Programmer. Cambridge University Press,
1996. 2nd edition.

40

[26]

[27]

[28]

[29]

Lucilia Figueiredo / Carlos Camarao

Frangois Pottier. A Framework for Type Inference with Subtyping. In Proceedings of
ICFP’98: the ACM SIGPLAN International Conference on Functional Programming,
1998. volume 34(1) of ACM SIGPLAN Notices, pages 228-238, June 1999.

Jacob Rehof. Minimal Typings in Atomic Subtyping. Proceedings of POPL’97: the
24th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
1997.

Jakob Rehof. The Complexity of Simple Subtyping Systems. PhD thesis, University of
Copenhagen, 1998.

Didier Rémy and Jérome Vouillon. Objective ML: An effective object-oriented extension
to ML. Theory And Practice of Object Systems, 4(1):27-50, 1998.

Dilip Sequeira. Type Inference with Bounded Quantification. PhD thesis, University of
Edinburgh, 1998.

Geoffrey Smith. Polymorphic Type Inference for Languages with Overloading and Sub-
typing. PhD thesis, Cornell University, 1991.

Geoffrey Smith. Principal type schemes for functional programs with overloading and
subtyping. Science of Computer Programming, 23:197-226, 1994.

Simon Thompson. Laws in Miranda. In Proceedings of the ACM Conference on Lisp
and Functional Programming, pages 1-12, 1986.

Simon Thompson. Lawful functions and program verification in Miranda. Science of
Computer Programming, 13(2-3):181-218, 1990.

Simon Thompson. Haskell: The Craft of Functional Programming. Addison-Wesley,
1999. second edition.

Valery Trifonov and Scott Smith. Subtyping Constrained Types. Proc. SAS’96. LNCS
1145, pages 349-365, 1996.

Philip Wadler. Views: a way for pattern matching to cohabit with data abstraction.
POPL’87, 14:307-313, 1987.

Philip Wadler. The essence of functional programming. In Conference Record of the
19th ACM Symposium on Principles of Programming Languages, pages 1-14, 1992.

