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Recovering an LCS in O(%z) Time and Space

Costas S. Iliopoulos *f Yoan J. Pinzén *

Abstract

Here we make use of word-level parallelism to recover a longest common subsequence
of two input strings both of length n in O(%Q) time and space, where w is the number
of bits in a machine word. For the special case where one of the input strings is close
to w its complexity is reduced to linear time and space
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1 Introduction

The Longest Common Subsequence (LCS) of two strings is one of the main problems in
combinatorial pattern matching. The LCS problem arises in a number of applications such
as text editing, file comparison utilities (e.g. the diff command in UNIX!), file compression
utilities, artificial intelligence (e.g. facial, handwriting, and speech recognition), molecular
biology (e.g. DNA sequences - genes - or protein alignment, molecular sequence comparisons,
study of the evolution of long molecules such as proteins), and several others. It has therefore
been extensively studied in the literature on sequential and parallel algorithms.

Given a string x over an alphabet X, a subsequence of x is any string w that can be
obtained from z by deleting zero or more (not necessarily consecutive) symbols. The LCS
problem for strings © = z122... 2, and y = Y192 - . . Yn, (R > m) consists of finding a third
string w = wyws ... w, such that w is a subsequence of both z and y of maximum possible
length. The LCS problem is related to two well known metrics for measuring the similarity
(distance) of two strings: the Levenshtein distance [11] and the edit distance [20].

The LCS problem can be solved in O(nm) time and space by a dynamic programming
approach [18, 20]. The asymptotically fastest algorithm is due to Masek and Paterson

[13] that uses the “four Russians” trick and takes O(%) time. Most other algorithms
use either divide-and-conquer or dominant-match-point paradigms. The divide-and-conquer
solutions is due to Hirschberg [8] who presented a variation of the dynamic programing
algorithm using O(n?) time but only O(n) space. The dominant-match-point algorithms
have complexity that depends on output parameters such as r, the total number of matching
pairs, and p, the length of the LCS. Hirschberg [9], presented an O(pn) algorithm and, in the
same year, Hunt and Szymanski [10] gave an O(rlogn) algorithm. It is important to note
that these two algorithms are efficient for cases where r and p are small. In the worst case
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p=mn and r = n?, thus, O(pn) becomes O(n?) and O(rlogn) becomes O(n?logn) which is
even worse than the dynamic programming algorithm.

The dynamic programing matrix can be parallelized to get better algorithms. The idea
of ‘packing’ bits in a computer word to speed up algorithms has been used extensively in
the last few years. The first bit-parallel algorithm was the exact string matching algorithm
Shift-Or. The Shift-Or algorithm was originally presented by Baeza-Yates and Gonnet [4],
where it was extended to handle multiple patterns, and mismatches. The Shift-Or algorithm
was subsequently modified by Wu and Manber [21] to handle regular expressions and all
these ideas were used to build a software called agrep. Myers [14] developed a competitive
algorithm that computes the edit distance of two strings in O(%2) time.

Recently, Crochemore et al. [5, 6] and Allison and Dix [1] gave, separately, an 0(7;—2)
bit-vector algorithm to compute the length of the LCS using O(7:) space. In this paper we
extend these algorithms to solve the problem of recovering the longest common subsequence
instead of computing just its length. Our algorithm has O(%z) time and space complexity.
Thus, linear time and space for the case where the length of one of the strings is close to w.

The paper is organised as follows. In the next section we present some definitions and the
basic background. In Section 3 we explain the CIPR algorithm and in Section 4 we explain
how to adapt it to recover an LCS. In Section 5 we present some experimental results and
in Section 6 we give our conclusions.

2 Preliminaries

Given an alphabet X, an element of ¥* is called a string or sequence and is denoted by one
of the letters = or y. For two sequences x = z1x3 ... %y, and y = y1¥ys . .. yn the numbers m
and n (n > m) are called the length of z and y, respectively. We say that x is a subsequence
of y and equivalently, y is a supersequence of w, if for some iy < iz < ... < 'ip, T; = y;,
where 1 < j < m. Given a finite set of sequences, S, a longest common subsequence (LCS)
of S is a longest possible sequence w such that each sequence in S is a supersequence of w.
The LCS of two strings, x and y, is a subsequence of both x and of y of maximum possible
length. The ordered pair of positions i and j, denoted [4, j], is a match if and only if z; = y;.
If [¢, 5] is a match, and if an LCS w of 122 ... 2; and y1y2 ...y, has length k, then k is the
rank of [i, j]. The match [i, ] is k-dominant if it has rank &k and for any other pair [i’, j'] of
rank k, either ' > i and j/ < j or ¢/ <i and j' > j. A match [i, j] precedes a match [i’, '] if
i < i and j < j'. Let r be the total number of match points, and ¢ be the total number of
dominant points (all ranks). Then 0 < p < ¢ < r < nm. Computing the k-dominant match
points is all that is needed to solve the LCS problem since the LCS of x and y has length p
if and only if the maximum rank attained by a dominant match is p. Let R denote a partial
order relation on the set of match points between = and y. A set of match points such
that in any pair one of the match points always precedes the other in R constitutes a chain
relative to the partial order relation R. A set of match points such that in any pair neither
element of the pair precedes the other in R constitutes an antichain. A decomposition of a
partially ordered set (poset) into antichains partitions the poset into the minimum possible
number of antichains. The LCS problem translates to finding a longest chain in the poset
of match points induced by R [19].

Let L[0..m,0..n] be the dynamic programming matrix, where L; ; represents the length
of the LCS (LLCS) for z1x2...x; and y1y2...y,;. The following simple recurrence formula
by Hirschberg [8] computes p = L[m,n] in O(nm) time and space.
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0, if either i =0or j =0
Lli,jle=q Lli-1,j-1]+1, if pi =t; (1)

In fact, only linear space is needed to find the LLCS because the computation of each
row/column only requires its preceding one.

As an example, Fig. 1 shows the computation of the L-matrix for x=%“survey” and
y="“surgery”.

o 1 2 Y s 4 5 6 7
e[ s]Julr[eglelr[y]

o | € o} o0 | 0} 0] O] 0] 0] 0

1| s o1 1} 1|1 ]| 1|1]1
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s | T o1 ]2 13 |3 ]3] 3] 3

z i v o1 [ 2333373
5| e o[ 1| 2| 3|3 ]| 4] 4| 4

6| ¥y o[ 1| 2| 3|3 ]| 4] 4|5

Figure 1: The LCS L-matrix for z="“survey” and y="“surgery”.

The LLCS p for this example is L[6,7] = 5 and LCS w = “surey”. In this case the
computed LCS is unique but that is not always the case.

Throughout the paper we will make use of C-like notation for the following bit-wise
operations:

bit-wise operation | C-like symbol | Example
OR | 0101 | 1100 = 1101
AND & 0101 & 1100 = 0100
XOR (exclusive OR) - 0101 © 1100 = 1001
NOT (complement) ~ ~1100 = 0011

Let A[0..n]o..m be a bit-vector with n binary words of m bits each, where A[j]; € {1,0}
refers to the ith bit of the binary word A[j]. We also define its complement as A’[0..n]o. .m
(i.e. A'[j] = ~A[j] for j € {0..n}).

3 The CIPR algorithm

In this section we show how the CIPR algorithm presented by Crochemore et al. [5, 6]
works and in the next section we explain how to adapt it to recover an LCS.
The CIPR algorithm computes the length of the LCS of two input strings both of length

n using O(%Z)) time and only O(7%) space. It makes use of the monotonicity property to

store each column of the L-matrix into a bit-vector with n bit-words of m bits each, thus,
using only ©(n[2])? bits instead of ©(8nm) bits. Let V[0..n]o..nm be the relative-encoding
bit-vector of the L-matrix defined as follows:

2Here, we assume two input strings of length n and m, m < n.
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Y Y
b)) 1 2 3 4 5 6 7 1 2 3 4 5 6 7
acgt (a)glc)a alc)t (aglc)a alo)t
1t 0001 1t 000O0O0O01 1t 000O0O0O0T1
2t 0001 2t 000O0O0O01 2t 0000O0O0O0
52 1000 s3(a) 1111111 3(a) 1111110
r4t 0001 4t 1111112 4t 0000O0O0T1
5¢c 0100 5 1| 1| 292m=2u=2u=2 5 0011110
6c 0100 6 1122 2 3 3 6 000O0O0T1T1
7¢g 0010 g 1222233 7¢g 0100000
(a) Bit-Vector M (b) The L-Matrix (¢) Bit-Vector V
1 2 3 4 5 6 7 1 2 3 4 5 6 7
acgt (a)glc)a alo)t (a)glc)a alo)t
1t 1110 1t 1111110 1t ]
2t 1110 2t 1111111 2t ]
5a 0111 3(2) 00000 0 1 3(a) ® . .
r4t 1110 4t 1111110 4t  J
5¢c 1011 5 1100001 5 O .
6c 1011 6 1111100 6 ] ®
7g 1101 7g 1011111 7T g (]
(d) Bit-Vector M’ (e) Bit-Vector V' (f) Antichains
® match point antichain
@® dominat match point @ LCS match point

Table 1: Matrix L and the bit-vectors M, V', M’ and V"’ for x="“ttatccg” and y="“agcaact”.

Vjli < Lli,j] = L[i = 1,5] € {0,1} for (i, j) € {1.m} x {1.n} (2)

Table 1(b) and 1(c) show the L-matrix and the relative-encoding bit-vector V', respec-
tively, for z="ttatccg” and y="“agcaact”.

We can think of the L-matrix as an automaton with n states where each state will
be a bit-vector V'[j] with m bits. The transition function to compute a new state V'[j],
is a set of O(**) bit-wise operations that depends only on the previous state V[j — 1]
and a (preprocessed) bit-vector of the match points between the symbol y; and z. This
preprocessed bit-vector M[1..|%|]o..m can be computed in O(m) time and is defined as follows:

1, ifz; =« )
Mla); < { 0. otherwise for « € ¥ and i € {1..m} (3)

Table 1(a) and 1(d) show the resulting bit-vectors M and M’ for r=“ttatccg”, y="“agcaact”
and ¥={ ‘a’,‘c’,‘g’,‘t’}. Recall M’ is the complement of M, i.e. M'[a] = ~M][a] for all
o€ X,

The transition function to compute the bit-vector V’[0..n] is defined as follows:
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0 2m —1, for j= 0
Vil = { (V 1 (V & My ) |(V & M'ly,), for j € {1.n} @

where V = V’[j — 1]. Table 1(e) shows the resulting bit-vector V’ for our example. Fig.
2 depicts the automata for x=“ttatccg” and y="“agcaact”. The numbers inside each state
corresponds to the decimal value of V'[j]. For instance, V'[0]=2" — 1=27 — 1=128 — 1=127
and V'[2] = (0111011) = 59.

a
12725128550 ‘I’B =75 586
Vil v Vil VAl Vel VT
Figure 2: Automata-like representation of the L-matrix for xt=“ttatccg” and y="“agcaact”.

Now, let us trace the computation of V'[3] (state 3) using equation (4).

V2l 0111011 &
M[c] 0110000
i) 0110000
V2] 0111011 &
M[c] 1001111
(i) 0001011
V2] 0111011+
(i) 0110000
Gii) 1101011
(i) 1101011 |
(i) 0001011
VB=(v) 1101011

After these four simple bit-wise operations (two bit-wise AND, one bit-wise OR and one
bit-wise addition) we get V'[3] = (1101011), = 107.

V'[3] is the relative-encoding of the third column of the L-matrix (complement two),
then, by looking at the bits in it, we know that the 1-anti-chain passes at position 3 (the
first zero counting from left to right) and the 2-anti-chain passes at position 5 (the second
zero). We also know that LLCS=2 by counting the number of zeros.

(#i1)
(1) (i)
VBl — (V'[21 + (V'[2] & Mys =*c’]) ) | (V'[2] & M'[ys = *c’])
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(a) Horizontal Antichains (b) Bit-Vector V' (¢) Bit-Vector K

Figure 3: Computation of bit-vector K for z="“ttatccg”’ and y=“agcaact”.

4 The New Bit-Vector Algorithm

In this section we extend the CIPR algorithm presented in the previous section so that it
computes the length of the LCS and recovers it. Unfortunately, the bit-vector V' in not all
that is needed, we also need the exact location of all the k-dominant match points. We now
define and show how to compute the k-dominant matches bit-vector K

0, if [¢,4] is a k-dominant match

. for [i,7] € {1.m} x {1..n} (5)

Kljl;
] H{ otherwise

)

This bit-vector can be computed using the information in V’'. V' contains the encoding
of the horizontal part of all the anti-chains (refer to Fig. 3). To compute all the k-dominant
match points (those matches that are positioned at the convex corners of each anti-chain if
viewed from point V’[n],,) we just need to find those locations where there is a horizontal
change of bits from 1 to 0. i.e. All [4, j] such that V'[j —1]; = 1 and V'[j]; = 0. For instance
(in Fig. 3(b)), [1,6]—=[1,7], [3,0]=(3,1], [4,6]—[4,7], [5,2]=[5,3], [6,5]—[6,6] and [7,1]—[7,2].
This can be accomplished by XOR-ing V[j — 1] with V[j]. However, we will get some false
matches, namely, those locations where there is a change from 0 to 1. We can fix this
problem by AND-ing it with V'[j — 1]. Therefore, we can get K as follow:

K[j] — (V'[j =17 V'[5]) & V'[j = 1] for j € {1.n} (6)

Now that we have bit-vectors V' and K, we can proceed with the design of the new
algorithm.

The main idea to solve the problem is quite simple: if we make sure that each anti-
chain is contributing with exactly one k-dominant match point then we can be sure that the
resulting set of selected matches conform an LCS. We go ahead as follows: First, we would
like to identify a p-dominant match point (recall p is the length of the LCS). Let [i’, j'] be
that match. So we can be sure that there is not any anti-chain crossing the area 7' defined
by the square {[i’, j'],[m,n]} (refer to Fig. 4). The next step is to find a (p — 1)-dominant
match [¢”, j] such that there are not anti-chains crossing the area 7" defined by the square
{[¢",3"],17,4']}- If we repeat this process p times until we find the 1-dominant match point
[i(p), j(p)], all the discovered matches correspond to an LCS. The pseudo-code in Figure 5
uses this idea to recover the LCS of two given strings x and y. We use masking to select the
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y]-(m LR RS yj(Az ij y]// yj’

S

(p-1)-anti-chain  (p)-anti-chain

Figure 4: Illustration of BV-LCS algorithm computation.

bits of interest and to ignore the others. At the beginning all the bits are of interest and that
is the reason way in line 1 we set mask = 2™ — 1. Let us assume that we want to consider
V[j] in Fig. 5. mask will take care of ignoring all the bits from m to i’. Vmasked contains
the valid bits from ¢’ up to 1. We want to know if the last bit of the bit-words Vmasked
and Vmasked (Vmasked = Vmasked & K|j]) are the same. If they are different we just
move to the next state (V[j — 1]), otherwise (they are the same) we report (k, j) as an LCS
match point.

Fig. 6 shows a full example. An LLCS match point is reported whenever k and ¢ are the
same.

BV-LCS(z,y,m,n, V', K)

1 mask — 2™ —1

2 for j «— n downto 1

3 do Vmasked — V'[j] & mask

Vmasked — Vmasked & K|[j]

k «— lastbit(Vmasked)

0 — lastbit(Vmasked')

if k = ¢ and Vmasked > 0
then mask «— 2F — 1

REPORT(K, j)

© o0 N O Ut

Figure 5: BV-LCS algorithm.
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Figure 6: Illustration of the computation of the BV-LCS algorithm for ¥={‘a’,’c’,'g’,‘t’},
r="agcaactgggtcgctcggatgt” and y="“ttatccgcgaggaa”. The table on the top presents
all the k-dominant match points and all the k-anti-chains. The middle table shows the
values for k and ¢ computed by the BV-LCS algorithm. The bottom table shows these
values graphically. The dotted line represents the values for ¢ and the bold line the values
for k. Whenever they intersect (grey boxes) we have an LCS match point member. The
final discovered LCS string for the input strings is w="“accgcggga” of length 9.
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5 Experimental Results

We implemented algorithm BV-LCS and we compared it with two classic algorithms. More
precisely, we compared the following algorithms: (1) The unrestricted model of BV-LCS al-
gorithm (unrestricted means that n can be of any size, i.e. n > w). (2) The basic Hirschberg
algorithm (H) [8]: This algorithm is a clever modification of the dynamic programing algo-
rithm using O(n?) time but only O(n) space. (3) The basic Hunt-Szymanski algorithm (HS)
[10]: This algorithm runs in O((r+n) logn) time and O(r+n) space. Clearly, this algorithm
is efficient for applications where 7, the number of match points, is small. To have this fact
into account, we used an alphabet size of 100 for the HS algorithm and size 4 for the others.
All these algorithms were implemented in C++ and run on a SUN Ultra Enterprise 300MHz
running Solaris Unix with a 32-bits word. Fig. 7 shows the results. BV-LCS algorithm
is always superior for the values used in this experiment. However, there might be special
cases where HS outperforms BV-LCS algorithm, namely, when the number of match points
between the sequences is significantly small.

6000 | | | | | |

5000

4000

3000 Pl

Time (in milli secs.)

2000 £ i

1000

|
\

A
b3
]

X

B e b o ¢ o g —o—¢ O
0 —
0 1000 2000 3000 4000 5000 6000 7000
Text Length

Figure 7: Timing curves for BV-LCS, H and HS algorithms.

6 Conclusion

We have presented a new algorithm based on bit-parallelism that recovers an LCS of two
input strings both of length n in O(%) time and space. This algorithm behaves optimally
regardless of other input/output parameters such as r, the number of match points and
p, the length of the LCS. This makes it a very good choice for those cases where we have
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insufficient knowledge of the nature of the sequences to be compared, before hand. More
study needs to be carried out to, firstly, improve its space complexity, and secondly, find
suitable applications where it can be used. For instance, it seems that we could use the BV-
LCS algorithm to speed-up the basic Hirschberg’s divide-and-conquer algorithm by splitting
the text in block of size w and then run the BV-LCS algorithm on those blocks. We might
get a significant improvement in its running time while using the same space complexity
(i.e. linear space).
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