

 1

Query Acceleration in Distr ibuted Database Systems

Ramzi A. Haraty1 and Roula C. Fany2
1 Lebanese American University, P.O. Box 13-5053

Beirut, Lebanon
Fax: 011-9611-867098

lb.edu.lau.rharaty@beirut: Email
2 Beirut Riyad Bank, Riyad Soloh Street, Beirut Riyad Bank Building

Beirut, Lebanon,
Email: rolafany@sodetel.net.lb

Abstract

The advent of telecommunication era and the constant development of hardware and network structures
have encouraged the decentralization of data while increasing the needs to access information from different sites.
Query optimization strategies aim to minimize the cost of transferring data across networks. Many techniques and
algorithms have been proposed to optimize queries. Perhaps one of the more important algorithms is the AHY
algorithm using semi-joins that is implemented by Apers, Hevner and Yao in [1]. Nowadays, a new technique
called PERF (Partially Encoded Record Filters) seems to bring some improvement over semi-joins [12]. PERF
joins are two-way semi-joins using a bit vector as their backward phase. Our research encompasses applying PERF
joins to two well know algorithms: AHY and W, which both deal with query optimization. Programs were
designed to implement both the original and the enhanced algorithms. Several experiments were conducted and the
results showed a very considerable enhancement obtained by applying the PERF concept. This major improvement
led us to further observations and studies.

Key Words: Query Acceleration, PERF Joins, and Semi Joins.

1 - Introduction

The recent telecommunication boom has encouraged business expansion resulting in the decentralization of data
while increasing the needs for instant information access.

A distributed database system is a collection of sites connected on a common high-bandwidth network [9].
Logically, data belongs to the same system but physically it is spread over the sites of the network, making the
distribution invisible to the user [5]. Each site is an autonomous database with its processing capabil ity and data
storage capacity. The advantage of this distribution resides in achieving availabilit y, modularity, performance, and
reliabilit y.

Distributed query processing is the process of retrieving data from different sites. Accessing data from sites
involves transmission via communication links, which creates delays. The basic challenge is to design and develop
efficient query processing techniques and strategies to minimize the communication cost.

Nowadays, with the explosion of interest in data warehouses and the development of huge applications such as
federation and mediation over heterogeneous and object-oriented databases, there is a pressing need for data
reduction to minimize data shipping costs. This is the main purpose of query optimization which estimates the cost
of alternative query plans in order to choose the best plan to answer quickly and efficiently, complex and
expensive queries [11].

The query optimization problem was addressed many times, from different perspectives, and a lot of work has
been done. Proposed algorithms and techniques can be categorized in two main approaches [7], [6], [8], [14],
[10], [2], [13], and [11]:

1- Minimize the cost of data transferred across the network by reducing the amount of transmitted
information, and

2- Minimize the response time of the query by using parallel processing techniques.

Some might even add another category, which is the hybrid approach, merging both data reduction and time
reduction.

One of the most popular and important algorithms suggested for query optimization with minimum cost was
algorithm GENERAL (total cost) presented by Apers, Hevner and Yao [1]. The advent of AHY was a revolution

 2

in query optimization domain because it introduced semi-joins as reducers in the query optimization process. It
uses the three-phased approach method, which consists of the following:

- Local processing to filter unnecessary data.
- Semi-join reduction involving data shipment from one site to another to be reduced.
- Final assembly at the destination site.

A decade later, and with the continuous research and methods developed, a new technique called PERF (Partially
Encoded Record Fil ter) was presented by Kenneth Ross [12]. This method is designed to minimize the cost of the
“backward” phase of the two-way semi-join.

A few years later, William T. Bealor proposed a new algorithm called W that uses profitabili ty and gain
calculation results to help in choosing reducers [3]. He proved his algorithm to be an enhancement over AHY.

In this paper we present an improvement over AHY and W using PERF joins. The rest of the paper is organized as
follows: section 2 overviews the PERF concept and presents our AHYPERF algorithm, section 3 describes our
WPERF algorithm, section 4 presents a comparative example solved using the unoptimized, AHY, AHYPERF, W,
and WPERF methods, section 5 provides the experimental results, and section 6 concludes the paper.

2- The AHYPERF Algor ithm

Partially Encoded Record Fil ter is a new two-way semi-join implementation primitive. The basic idea of PERF is
as follows:
Considering two relations R and S,
1. Project R on a joining attribute and get PR.
2. Ship PR to S.
3. Reduce S by a semi-join with PR.
4. Send back to R, a bit vector (the PERF) that contains one bit for every tuple in PR
 and in the same order. If the tuple is matching then send a 1 else send a 0.

The fourth step is known as the backward phase. The main utili ty of PERF is that it minimizes this phase and
hence makes the forward phase (step 2) cost greater than the backward phase. PERF joins can be better enhanced
by sending back to R not all the bit vector corresponding the PR but only the 0s part or 1s part according to which
one is less in size and hence has lower transmission cost.

When applying PERF to the original AHY algorithm the following is performed:
1. Perform all initial local processing.
2. Generate candidate schedules by isolating the attributes and creating simple queries.
3. For each relation Ri,

a- Use algorithm SERIAL_PERF and create candidate schedules.
b- Use procedure TOTAL_PERF to integrate candidate schedules.

2.1 - Algor ithm SERIAL_PERF

1. Order relations Ri such that S1≤ S2 ≤… ≤ Sm
2. If no relations are at the result node, then select strategy:

R1 → R2 → - - - Rn → result node
 Or else if Rr is a result at the result node, then there are two strategies:

R1→ R2 → - - - → Rr → - - - Rn → Rr
 Or

R1→ R2 … → Rr-1 → R r+1 → … Rn → Rr
 Select the one with minimum total time.
3. Build a PERF list where PERF Ri Ri+1 j is set to 1 when transmission was done from Ri to Ri+1 on join attribute j.
4. When calculating transmission cost,

If PERF Ri Ri + 1 j = 1 then
Cost = 0

Else
 Cost = C0 + C1 * bik + (bik *

�
(i + 1) k)/8

 where
C0 + C1 * bik is the linear function of transmission cost that is equal to the fixed cost per byte transmitted
(C1) multiplied by the size in bytes of the join attribute projected. This is the usual cost of a semi-join
known as the forward cost.

 3

(bik * � (i + 1) k)/8 is the backward cost that is the cost of transmitting back to Ri the bit vector consisting
of only matching values of the corresponding attribute. For simplicity of this equation, we are
considering attribute k of width 1 byte.

5. Select the strategy with minimum total time.

2.2 - Algor ithm TOTAL_PERF

1. Add candidate schedules: For each relation and candidate schedule, if the schedule contains a transmission of a

joining attribute of the relation then add another similar schedule without the transmission of a joining
attribute of the relation.

2. Calculate the cost of the newly added schedules as in step 4 of SERIAL_PERF.
3. Select the best candidate schedule to minimize each joining attribute total time.
4. Update the PERF List: Set to 1 the values of all transmissions of BESTij selected.
5. Candidate Schedule Ordering: For each relation Ri, order the candidate schedules BESTij on joining attribute dij

so that,
 ARTi1+C (s1*SLTi1) ≤…≤ARTi � +C (si*SLTi �)
 where
 ART is the arrival time of the best schedule.
 SLT is the accumulated attribute selectivity of the best schedule.
 s is the selectivity of the corresponding relation.
6. Schedule Integration: For each BESTij construct an integrated schedule to Ri
 consisting of parallel transmission of BESTij and all schedules BESTik where k < j.

As it can be seen, the PERF version of AHY algorithm does not eliminate redundant transmissions from the
schedules but it makes their cost 0 when they occur. This can be made possible by adding a little overhead on the
transmission cost, which is the backward cost. Using this fact, if a transmission was done from site A to site B
using a join attribute j, then every other transmission from A to B using j will have a zero cost and every
transmission from B to A using j will have also a zero cost. From this point, a PERF join can be seen as a non-
redundant symmetric function. This fundamental property allowed us to enhance over the traditional AHY
GENERAL algorithm.

We note that the reduction effect of PERF is proportional to the width of the attributes used. In Section 6, we show
results from different width selections to clarify this issue.

2.3 - Complexity Analysis of AHYPERF Algor ithm

As far as complexity is concerned, there was not a considerable increase in the complexity of AHYPERF
algorithm since data will be still scanned in the same way and for the same number of times. Ordering wil l also be
done in the same fashion. What is added is only the maintenance of the PERF list. According to its
implementation, PERF list could be very easily maintained and with minimum complexity time. In our case, PERF
list was implemented as a three-dimensional array. So, globally, and without loss of generality, we can assume that
AHYPERF version of AHY algorithm takes no more than O (� m2) where

� is the number of different simple queries.
m is the number of relations in the query.

3 - The WPERF Algor ithm

The main aim of W is to minimize total time by using reducers to eliminate unnecessary data. This algorithm is
characterized by two distinct phases [3]:

1. Semi-join schedules for constructing each reducer are formed using a cost/benefit analysis based on
 estimated attribute selectivities and sizes of partial results.
2. Schedule is executed.

Before exposing the details of the heuristic, we note some assumptions and definitions needed. The following
corollaries are needed:

A beneficial semi-join is the one for which its benefit exceeds its cost. The cost of a semi-join is expressed as the
amount of inter-site data transfers needed to compute the operation while the benefit is the amount of data
eliminated [4].
In general, the cost and benefit functions are defined as follows:

Cost: C(Ri-dik→Rj) = C0 + C1 * bik
where

C0: start-up cost for a transmission.
C1: fixed cost per byte transmitted.

 4

bik: size (e.g. in bytes) of the data item in attribute dij.

Benefit: B(Ri-dik→Rj) = Sj - S’ j

where
Sj: size (e.g. in bytes) of relation Rj.
S’ j: size of relation Rj after reduction.

Hence, the benefit of a semi-join is the amount of data eliminated by reduction.
The profitabilit y of a semi-join is defined as follows:
P(dij dkj) = B(dij dkj) – C(dij dkj).
Let P(dij) be the selectivity of dij, (i.e., the number of distinct values of dij (Ri[dij]) divided by all possible domain
attribute values (D[dij])). Hence, � (dij) = Ri[dij] / D[dij].
In terms of � (dij),
C(dij dkj) = C0 + C1 x S(Rk)
B(dij dkj) = S(Rk) – S’ (Rk) = S(Rk) – (S(Rk) * � (dij))

= S(Rk) * (1 - � (dij))
P(dij dkj) = B(dij dkj) – C(dij dkj)

 = S(Rk)*(1- � (dij) - (C0 + C1 * S(Rk))
 = S(Rk) * (1- � (dij) -C1) - C0

We define the marginal profit to the extra profit we can achieve by using one reducer instead of the other, as in the
following formula:
MPRi(d*xj dyj)=P(dyj* Ri)–P(d*xj Ri)
The gain of semi-join is the sum of the profit and the marginal profit.
G(d*xj dyj)=P(d*xj dyj) + MP(d*xj dyj)
A semi-join is said cost-effective when its gain > 0; hence, its benefit exceeds its cost and it has a marginal profit.

When applying PERF to W algorithm, the same concept is preserved but semi-joins are replaced by PERF joins.
Our enhancement consisted of the following 2 phases that were added to the schedule construction:

1. Build a PERF list where PERF Ri Ri+1 j is set to 1 when transmission was done from Ri to Ri+1 on join
 attribute j.
2. When calculating transmission cost,
If PERF Ri Ri + 1 j = 1 then

Cost = 0
Else

 Cost = C0 + C1 * bik + (bik * � (i + 1) k)/8
 where

C0 + C1 * bik is the linear function of transmission cost that is equal to the fixed cost per byte transmitted
(C1) multiplied by the size in bytes of the join attribute projected. This is the usual cost of a semi-join
known as the forward cost.
(bik * � (i + 1) k)/8 is the backward cost that is the cost of transmitting back to Ri the bit vector consisting
of only matching values of the corresponding attribute. For simplicity of this equation, we are
considering attribute k of width 1 byte.

As it can be seen, the PERF version of W algorithm does not eliminate redundant transmissions from the schedules
but it makes their cost 0 when they occur. This can be made possible by adding a little overhead on the
transmission cost, which is the backward cost. Note that the reduction effect of PERF is proportional to the width
of the attributes used. In section 5, we show results from different width selections.

3.1 - Complexity Analysis of the WPERF Algor ithm

As far as complexity is concerned, there was not a considerable increase in the complexity of WPERF algorithm
over the original one, since data will be still scanned in the same way and for the same number of times. Ordering
will also be done in the same fashion. What is added is only the maintenance of the PERF list. According to its
implementation, PERF list could be very easily maintained and with minimum complexity time. In our case, PERF
list was implemented as a three-dimensional array. So, globally, and without loss of generality, we can assume that
WPERF version of W algorithm takes no more than O (nm2) where

n is number of common-joint attributes.
m is the number of attributes.

4 - A Comparative Example

Consider the following query: List the product number, name and total quantity for all parts that are currently on
order from suppliers who supply that part to jobs 10 or 20.

 5

The database used contains the following relations:
1. PARTS (P#, PNAME): This relation contains part numbers and names.
2. ON_ORDER (S#, P#, QTY): This relation contains supplier number, part number and quantity on order.
3. S_P_J (S#, P#, J#): This relation contains for each job number, the part numbers and from which suppliers they
are.

Obviously our database is distributed and each relation resides at a different site. The two joining attributes are: P#
and S#. The cost function to be used is: C(X) = 20 + X. It is a linear function in the form of y = aX + b where

a is the cost added per byte transmitted.
b is a fixed cost dependent on the network used. In this example b is taken as 20.

The corresponding size and selectivity relations are given in figure 1.

Ri |Ri| Si di1=P#
bi1 � i1

di2=S# bi2
� i2

R1 70 1000 400 0.4 100 0.2
R2 140 2000 400 0.4 450 0.9
R3 150 3000 900 0.9 - -

Figure 1. Relations Description.

For each relation we have as given:
|Ri|: cardinality of the relation (number of tuples).
Si : size of the relation in bytes.
dii : joining attribute.
bii : for joining attribute, the size, in bytes, of the column in the corresponding relation.

� ii : for each joining attribute, the corresponding selectivity.

4.1 The AHYPERF Algor ithm

Applying AHYPERF to this query, two simple queries are formed for attributes di1 and di2. In step 2, the following
serial candidate schedules are formed:
For di1, For di2,
 d11 d12
d11: 420 d12: 120
 C(400) C(100)

 d11 d21 d12 d22
d21: 420 180 d22: 120 110
 C(400) C(0.4 * 400) C(100) C(0.2 * 450)

 d11 d21 d31
d31: 420 180 164
 C(400) C(0.4 * 400) C(0.4*0.4*900)

We will start the construction of the schedules for each relation.

Relation R1:
Attribute d11: The following schedules are added:
 d21 d21 d31

d’
21 : 420 d’ 31 : 436 380

 C(400) C(400 + 140 * 0.9/8) C(0.4 * 900)

Each of the schedules of d11 is applied to R1.
 d11 d21 R1
d21 : 424 180 420

Total time = C(400 + 70 * 0.4 / 8) + C(0.4 * 1000) + C(0.4 *2000)
 = 424 + 180 + 420 = 1024

 d11 d21 d31 R1
d31 : 424 196 164 380

 6

Total time = C(400+70*0.4/8)+C(0.4*400+140* 0.9/8)+C(0.4*0.4*900)+ C(0.4*0.9*

 1000) = 424 + 196 + 164 + 380 = 1164

 d21 R1
d’ 21 : 427 420

Total time = C(400 + 140 * 0.418) + C(0.4 * 1000)
 = 427 + 420 = 847

 d21 d31 R1
d’ 31 : 436 388 380

Total time = C(400+140*0.9/8)+C(0.4*900+150*0.4/8)+ C(0.4*0.9*1000)
 = 436 + 388 + 380 = 1204

Choosing the minimum time schedule, we find that BEST11 is d’ 21 with time 847.

Attribute d12: The following candidate schedule added:
 d22
d’ 22 : 470
 C(450)
Each of the schedules of d12 is applied to R1.
 d12 d22 R1
d22 : 128 114 920

Total time = C(100+70*0.9/8)+ (0.2*450+140*0.2/8)+C(0.9*1000)
 = 128 + 114 + 920 = 1162
 d22 R1
d’ 22 : 474 920

Total time = C(450 + 140 * 0.2/8) + C(0.9 * 1000)
 = 474 + 920 = 1394

We find BEST12 is d22 with time 1162.
Finally, for R1, we choose BEST11 with time 847.
At this stage we update PERF2—1, 1 = 1 and PERF1—2 , 1 = 1.

Relation R2:
Attribute d11:
 d11 d11 d31
d’ 21 : 420 d’ 31 : 428 380
 C(400) C(400 + 70 * 0.9/8) C(0.4 * 900)

Each of the schedules of d11 is applied to R2.
 d11 d21 R2
d21 : 0 180 820

Total time = 0 + C(0.4 * 400) + C(0.4 * 2000)
 = 180 + 820 = 1000

Note that transmission from 1—2 on attribute 1 is 0 because PERF1—2, 1 = 1.
 d11 d21 d31 R2
d31 : 0 187 0 740

Total time = 0+C(0.4*400+140*0.4*0.9/8)+0+C(0.4*0.9*2000)
 = 187 + 740 = 927
 d21 R2
d’ 21 : 427 820

Total time = C(400 + 140 * 0.4/8) + C(0.4 * 2000)
 = 427 + 820 = 1247

 d11 d31 R2

 7

d’ 31 428 387 740

Total time = C(400+70*0.9/8)+C(0.4*900+150*0.4*0.9/8)+C(0.4*0.9*2000)
 = 428 + 387 + 740 = 1555

We find BEST21 is d31 with total time 927 and BEST22 d’22 with total time 1948.
Finally, for R2 we choose d31 with total time 927.
PERF2—3, 1 = 1 and PERF3—2, 1 = 1
Applying for relation R3 we get BEST31 with total time 740.
Hence, the most optimal total time with PERF algorithm for this query is:
847 + 927 + 740 = 2514.
Contribution: (2880 – 2514) / 2880 = 12.7% where
Contribution = (Initial time - Enhanced time) / Initial time
and in our case the initial time is the AHY time and the enhanced time is AHYPERF time.

4.2 The WPERF algor ithm

We first establish schedules for construction of the two reducers:
Reducer for di1: The first semi-join is considered: d11 d21 with cost = S(d11) = 420 and benefit = S(R2) –
(S(R2) * � (d11)) = 1220.
Hence, the marginal profit for R3:
MPR3 = S(R3) * (� (d11) – � (d21) + S(d11)–S(d21)

= 3000 * (0.4 – 0.4 * 0.4) + 420 – 180
= 3000 * 0.24 + 240 = 720 + 240 = 960

Since both profit and marginal profit are positive, this semi-join is added to the schedule. Next, the semi-join d*21
d31 is examined with cost 180 and benefit 2540. The marginal profit of this semi-join with respect to R1 is:
MPR1 = 1000 * (0.4 – 0.4 * 0.8) + 180 – 164

= 1000 * 0.04 + 16 = 56

Again, both profit and marginal profit are positive, so the semi-join is added.

So the reducer is d*31. It is constructed b the following schedule.

 400 160
d11 → d21 → d31

Reducer for di2: The only semi-join to be considered is d12 d22 where the cost is 120 and the benefit is 1620.
The marginal profit with respect to R1 is:
MPR1 = 1000 * (1 – 0.9) – 90

= 1000 * 0.1 – 90 = 100 – 90 = 10

So the schedule for constructing d*22 is:
 100

d12 → d22
The second phase considers the reduction effect of the reducers starting with the smallest. Calculations are based
on the fact that the construction of the reducer will reduce certain relations. The reduction d*22 → R1 is considered
first with cost 128 and benefit 120 (because of the backward cost added) and then we do not need again to send
d*22 → R1 as we already have this information in the bit vector. So, the cost of the previous transmission will
become 0. This semi-join is appended to the schedule. Next, the reducer d*33 is considered but now we have the
following:
- S(R1)=900 : because R1 has been reduced by d*22.
- S(R2)=160 : reduced during the construction of the reducers.
- S(R3)=480 : reduced during the construction of the reducers.

Hence, the reduction d*33 → R2 has a cost of 164 and a benefit of 596. It is also appended to the schedule.
Therefore, the final schedule for execution is:
 420 180 164 344
d11 → d21 → d31 d*31 → R1 R1 → QS
 180
R2 → QS
 128 0 500
d12 → d22 d*22 → R1 R3 → QS

Contribution: (2018 – 1928) / 2018 = 4.46% where:
Contribution = (Initial time - Enhanced time) / Initial time
and in our case the initial time is the W time and the enhanced time is WPERF time.

 8

5 - Experimental Results

In order to conduct experiments, many were built:

• A parametric program to generate the dataset definitions randomly with different domain ranges and
different attribute selectivities. The user enters the maximum number of relations and the maximum
number of attributes per relation. From this data, the program uses random functions to define the
domain ranges and attribute selectivities (noting that for attribute selectivities the range should be
between 0.1 and 0.9).

• A parametric program to generate the relation files from the dataset definitions above. This program
creates a file for each relation and inserts into it a number of tuples equals the random cardinality of
this relation. The tuple is a series of numbers generated randomly.

• A program implementing the discussed algorithms that will read the dataset definition files and the
relation files and will simulate an inter-site data transfer and will calculate the cost of each transfer
and then the total cost.

Because datasets are build randomly but within our specific ranges, we could consider that the runs for each
scenario were able to represent a meaningful study sample for the cases.

Different scenarios were conceived in order to evaluate the performance of the different algorithms and for each
scenario programs were run 1500 times. Note that all programs were developed using Visual C++ 4.0 under
Windows 95. Experiments were conducted on a Pentium V PC with 64 MB RAM.

5.1 - Scenar io 1:

In this scenario the attribute width is taken as 1 byte for all attributes. Table 1 contains the results where the TYPE
field represents the number of relations involved in the join and the number of maximum join attributes, the
Unoptimized field represents the case where all the data is shipped from one site to the other, and the rest of the
fields represent the algorithms under study.

TYPE Unoptimized AHY AHYPERF W WPERF

2-2 15166.54 11281.77 10244.36 10555.78 10045.63
2-3 20176.99 12514.91 11210.69 11309.97 10512.57
2-4 25324.95 13195.31 11518.01 11111.44 10027.33
3-2 20675.39 15610.47 14097.76 14015.49 13628.02
3-3 25983.89 16727.14 15110.53 14835.10 14170.03
3-4 30977.84 17211.87 15422.78 14457.87 13581.98
4-2 26656.58 18105.75 16167.82 15243.94 15022.64
4-3 33149.04 20203.26 18039.28 16939.22 16472.85
4-4 39281.91 21067.12 18746.14 16971.68 16319.74
5-2 32613.54 19919.32 17448.54 15306.96 15229.38
5-3 41224.43 22975.32 20212.85 18000.69 17713.47
5-4 48771.57 24180.39 21166.99 18512.63 18039.93
Average: 30000.22 17749.39 15782.15 14771.73 14230.30

Table 1. Comparison Table.

Graphically, the results are shown in figure 2. We notice that WPERF outperforms the other methods in all cases.

 9

Figure 2. Comparison Results.

5.2- Scenar io 2:

In this scenario the attribute width is taken as 5 bytes for all attributes. The results for this experiment are
displayed in Table 2.

TYPE Unoptimized AHY AHYPERF W WPERF
2-2 77094.85 57045.23 51343.36 55590.24 52984.34
2-3 100824.51 61996.65 54589.02 58207.49 54231.05
2-4 128113.97 66652.65 57004.79 57770.61 52240.99
3-2 102374.75 77600.45 69121.66 71389.21 69357.14
3-3 126861.52 83015.71 73938.19 74782.07 71954.99
3-4 154160.29 85602.33 75057.11 72123.73 67829.88
4-2 133156.13 91216.04 79985.85 77390.21 76317.44
4-3 165297.06 101571.73 89211.25 86298.51 83836.67
4-4 194790.69 105177.11 91628.56 84845.83 81522.69
5-2 162878.19 100808.91 85699.60 77760.06 77336.34
5-3 204638.73 114924.46 98263.82 89970.74 88519.65
5-4 244435.78 121233.30 103244.07 92136.69 89856.33
Average: 149552.2 88903.71 77423.94 74855.45 72165.63

Table 2. Comparison Table.

Graphically, the results are depicted in figure 3. We notice that AHYPERF and WPERF outperform their
counterparts in all cases.

Figure 3. Comparison Results.

5.3 - Scenar io 3:

In this scenario the attribute width is taken as 50 bytes for all attributes. The results are shown in Table 3.

�
� 	 	 	 	

 � � � �
�

� � � � �

� � � � � �
� � � � � �
� � � � � �

� �

� ! " #
�
$ % & ' () *
$ % &

+ , - . / 0

1
2 1 1 1 1 1

3 1 1 1 1 1
4 1 1 1 1 1

5 1 1 1 1 1
6 1 1 1 1 1

7 1 1 1 1 1
8 9 9 9 9 9

: ; : : ; < : ; = < ; : < ; < < ; = = ; : = ; < = ; = > ; < > ; = > ; >

? @ A B C
?
D E F @ A B C
D E F

G H I J K L M L N O P

 10

TYPE Unoptimized AHY AHYPERF W WPERF
2-2 774307.23 571559.9 512075.76 553557.3 526940.4
2-3 1025722.9 631131.25 553042.67 587713.6 547917.1
2-4 1286922.7 654111.03 555093.58 553746.6 499728.7
3-2 1034533.1 782855.95 695615.08 718546.9 698591.4
3-3 1272349.4 814956.83 719179.11 727393.5 694341.1
3-4 1558745 870137.82 758737.1 734627.2 691109.8
4-2 1343785.1 919758.2 800893.21 776510.1 765846.9
4-3 1636465.9 1007484 882273.47 852440.9 829994.7
4-4 1954307.2 1056676.8 914048.56 852391.6 818450.5
5-2 1622776.1 1005206.8 849381.99 768641.9 764375.7
5-3 2025497 1142050.7 975639.24 893408.6 878125.6
5-4 2471104.4 1227620.7 1041665.4 923914.8 901240.8
Average: 1500543 890295.84 771470.43 745241.1 718055.2

Table 3. Comparison Table.
Graphically, the results are shown in figure 4.

Figure 4. Comparison Results.

We used three different scenarios in order to study the performance of the mentioned algorithms from different
perspectives. For each scenario, we compared the performance of the algorithms with respect to each other and
with respect to the unoptimized solution. Using different scenarios we studied better the behavior of all algorithms
under a variety of circumstances. We could be able to note that WPERF has the best performance for a field width
of 50 bytes. This result was expected because of the overhead added by PERF to the backward phase. Remember
that PERF concept consists of returning back to the original site a bit vector representing the matching tuples. This
overhead is somehow more considerable when the original field width is less than 1 byte because it might be more
profitable sometimes not to send back this data. But when having a width of 50 bytes, the backward cost becomes
negligible as compared to the forward cost.

Finally, we can conclude that the results of our experiments were up to the expectations and proved the power of
PERF joins and their advantage in optimizing the total time of distributed queries.

6 – Conclusion

In this paper, two algorithms have been presented as our contribution to the query optimization problem using
semi-joins. We have fully exposed both concepts of semi-joins and PERF joins and then, we have taken two
optimization algorithms using semi-joins (AHY and W) and enhanced them by applying PERF joins.

Theoretically, we have discussed the advantages of PERF joins over semi-joins which mainly consist of removing
the cost associated with redundant transmissions by adding a relatively negligible cost to the backward phase of
each PERF join.

Experimental results confirmed our expectations by showing a considerable enhancement over the original
algorithms. Different series of experiments were conducted, allowing us to study even better the efficiency of
PERF joins from different perspectives and to consider the best case for which PERF joins perform at most.

However, based on the fact that during the query processing, data in the relations should not be updated without
updating the PERF accordingly and because not much work has been done until now to deal with this problem, we

Q
R Q Q Q Q Q Q

S Q Q Q Q Q Q
T Q Q Q Q Q Q

U Q Q Q Q Q Q
V Q Q Q Q Q Q

W Q Q Q Q Q Q
X Q Q Q Q Q Q

S Y S S Y T S Y U T Y S T Y T T Y U U Y S U Y T U Y U V Y S V Y T V Y U

Z [\] ^
Z
_ ` a [\] ^
_ ` a

b c d e f g

 11

view PERF joins as the best solution for distributed query optimization that can be adapted for huge, static
warehouses where data is not changed very frequently.

Finally, we would li ke to mention that the optimization field is still an active research field and many new other
techniques are being proposed. We studied thoroughly one new strategy and we applied it but there are stil l many
others waiting for further study to prove their unique characteristics and advantages as well as their drawbacks.

References

[1] Apers, P., Hevner, A., and Yao, A. Optimization Algorithms For Distributed Queries in IEEE

Transactions on Software Engineering, Vol. Se-9, No.1. 1983. pp. 57-68.

[2] Barbara, D., DuMouchel, W., Faloustos, C., Haas, P. J., Hellerstein, J., Iaonnidies, Y., Jagadish, H.,

Johnson, T., Ng, R., Poosala, N., Ross, K., and Sevcik, K. The New Jersey Data Reduction Report.
Bulletin of the Technical Committee on Data Engineering, 1997. pp. 3-45.

[3] Bealor, T. Semi-Join Strategies For Total Cost Minimization in Distributed Query Processing. Master

Thesis, University of Windsor, Canada. 1995.

[4] Bernstein, P., Goodman, N., Wong, E., Reeve, C., and Rothnie, J. Query Processing in a System For

Distributed Databases (SDD-1) in ACM Transactions on Database Systems, Vol. 6, No. 4. 1981. pp.
602-625.

[5] Chatziantoniou, D., and Ross, K. GroupWise Processing of Relational Queries in Proceedings of the

1997 VLDB Conference, 1997. pp. 476-485.

[6] Chen, A., and Li, V. Improvement Algorithms For Semi-join Query Processing Programs In Distributed

Database Systems in IEEE Transactions on Computers, Vol. C-33, No.11, 1984. pp. 959-967.

[7] Hevner, A., Wu, O., and Yao, S. Query Optimization on Local Area Networks in ACM Transactions on

Office Information, Vol. 3, No. 1, 1985. pp. 35-62.

[8] Kang, H., and Roussopoulos, N. Using 2-Way Semi-joins in Distributed Query Processing in

Proceedings of the Third International Conference on Data Engineering, 1987. pp. 644-651.

[9] Karwin, B. InterBase Server Configuration And Optimization. Borland Developer’s Conference. 1996.

[10] Lei, H., and Ross, K. Faster Joins, Self-Joins and Multi-Way Joins Using Join Indices in International

Workshop on Next Generation Information Technologies and Systems. 1997.

[11] Levy, A., Srivastava, D., and Kirk, T. Data Model and Query Evaluation in Global Information

Systems. AT&T Bell Laboratories. 1991.

[12] Li, Z., and Ross, K. PERF Join: An Alternative to Two-Way Semi-Join and Bloomjoin. Technical
Report. Columbia University, New York. 1995.

[13] Li, Z., and Ross, K. Fast Joins Using Join Indices in VLDB Journal, Vol. 8, No. 1, 1999. pp. 6-12.

[14] Liu, C., and Chen, H. A Hash Partition Strategy for Distributed Query Processing. Technical Report.

De Paul University, Chicago. 1995.

