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Abstract

Explicit substitution calculi are extensions of the �-calculus where the substitution mechanism is

internalized into the theory. This feature makes them suitable for implementation and theoretical study

of logic based tools as strongly typed programming languages and proof assistant systems. In this paper

we explore new developments on two of the most successful styles of explicit substitution calculi: the ��-

and �se-calculi.
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1 Introduction

This paper focuses on the uses of explicit substitutions in the language of the simply-typed �-calculus. Type

theories were used at the beginning of the twentieth century as a formalism to deal with the mathematical

paradoxes studied at that time and incorporated in 1940 to the �-calculus by A. Church [11]. The need

of stronger programming languages guided type theory to the interest of computer scientists in the 1970's

and 1980's, when new languages based on type theories were developed. Probably the most relevant of

these languages is ML [42], developed by R. Milner. In the 1990's, several proof assistant systems based

on higher-order logics, such as Coq [5], HOL [27], and PVS [52], were developed. The �-calculus is the

simplest logical framework for reasoning about formal properties of all these systems and many of the

essential techniques and computational procedures involved in these systems have been developed, analyzed,

and improved in the context of the typed �-calculus before being implemented. These techniques include

simple mechanisms as type checking and type inference, and more complex ones as the used for dealing with

the inhabitation problem and the higher order uni�cation problem. The basic operation of the �-calculus

is the �-conversion that was originally de�ned based on an implicit notion of substitution were renaming

of variables was informally assumed to avoid \clashes" and \captures". This implicitness of the notion of

substitution was not critical before this theoretical framework was used in other contexts than the ones of

computer science, but making the notion of substitution explicit is essential when computational properties

such as time and space complexity should be analyzed.

We will focus on two styles of explicit substitutions: �� and �se. These calculi use a name-less notation

for variables. Therefore, technical nuisances due to the higher order aspect of �-calculus, as renaming and

capture of variables, are minimized or completely eliminated in �� and �se. For these calculi, we will motivate

and illustrate di�erent techniques developed for important computational problems and applications such as

higher order uni�cation, type inference, and inhabitation problem. These kind of problems arise naturally

in many �elds of computer science. Some of the current progress in the area of explicit substitution is

recorded in the series of \International Workshops on Explicit Substitutions: Theory and Applications to

Programs and Proofs" - WESTAPP that runs yearly together with the Conference on Rewriting Techniques

and Applications - RTA. For other surveys and tutorials on explicit substitution calculi see [38, 57].
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Firstly, in section 2 we present basic notions of the �-calculus, its representation in de Bruijn index

notation, its simply-typed version, and the Curry-Howard isomorphism. Afterwards, in section 3, we motivate

explicit substitutions and present the two before mentioned calculi of explicit substitutions along with their

simply-typed versions. In section 4, we explain brie
y the applications of explicit substitutions before

concluding in section 5.

2 The �-calculus

The �-calculus was developed by Church around 1930 [12] as a formal language for the foundations of

mathematics and logic. Although that foundation was later revealed to be inconsistent, indeed Russell

paradox [59] can be encoded in it, the �-calculus still provides a formal model of computability. Church

and Kleene [37, 10] proved that the class of �-expressions and the class of partial-recursive functions are

the same. This result, along with Turing's own work, shows that the �-calculus is as expressive as Turing

machines.

The notation consists of a set � of terms and rules to manipulate them. The set � is built on a countable

set of variables V = fx; y; : : : g and it is inductively de�ned as follows: V � �, if M;N 2 � then (M N) 2 �,

and if x 2 V and M 2 � then �x:M 2 �. Terms of the form (M N) are called applications and terms of the

form �x:M are called abstractions. Abstractions are binding structures. As usual for these kind of structures,

a notion of free and bound variables is necessary. The set of free variables of M , denoted FV (M), is de�ned

by FV (x) = fxg, FV ((M N)) = FV (M) [ FV (N), and FV (�x:M) = FV (M) n fxg. The variable x in

a term �x:M is said to be bound. Names of bound variables are irrelevant. For instance, �x:x and �y:y

represent the same �-term. This implicit equivalence is called �-conversion. Formally, if z 62 FV (M), then

�x:M =� �z:Mfz=xg, where for an arbitrary term N , MfN=xg denotes the atomic substitution of the free

occurrences of the variable x in M by N .

Substitution plays a very important role in the �-calculus. In fact, the main computational rule in this

formalism, the �-rule, is expressed as follows: (�x:M N)
�
- MfN=xg. Informally, it states that the

application of a function �x:M to an argument N , results in a term MfN=xg where the formal parameter x

has been replaced by the argumentN inM (the body of the function). An additional rule, called �, states that

abstractions computing the same value for the same argument are convertible. Formally, �x:(M x)
�
- M ,

if x 62 FV (M).

The formal de�nition of substitution is not as simple as it seems. The following one, commonly used in im-

plementations, is wrong: xfM=xg =M , yfM=xg = y, if y 6= x, (M1 M2)fM=xg = (M1fM=xg M2fM=xg),

(�x:N)fM=xg = �x:N , and (�y:N)fM=xg = �y:NfM=xg, if y 6= x. The problem arises in the last

case: the term M may contain a free variable y which becomes a bound variable when the substitution

is applied. A correct de�nition should avoid this capture; for instance, by modifying the last case with

(�y:N)fM=xg = �z:Nfz=ygfM=xg, where z 62 FV (M).

The �-calculus is not terminating. Indeed, a term like (�x:(x x) �x:(x x)) �-reduces to itself and then

it can be always reduced. However, the �-calculus satis�es, the Church-Rosser property i.e., if M1 =�� M2,

then there exists N such that M1
��

�

- N and M2
��

�

- N .1 In consequence: (1) the �-calculus is also

con
uent and (2) normal forms, it they exist, are unique. We refer to [3] for a complete description of the

�-calculus and its properties.

2.1 De Bruijn indices

At the beginning of the seventies, de Bruijn developed a nameless notation for the �-calculus [19]. In that

notation, names of bound variables are replaced with indices.

De�nition 2.1 The set �dB of �-terms in de Bruijn index notation is de�ned inductively as

M;N ::= n j (M N) j �M

1As usual, if R is a term rewrite system, we denote by
R
- the relation induced by R and by

R
�

- the re
exive,

symmetric, and transitive closure of
R
- . Furthermore, the equational theory associated to R de�nes a congruence denoted

by =R.
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where n 2 N
>0 .

An index counts the number of �-symbols in the binding scope of the bound variable that it represents.

For instance, in de Bruijn index notation, the term �x:x is written �1 since the bound variable x is in the

binding scope of one �-symbol. Similarly, the term �x:(�y:(x y) x) is written �(�(2 1) 1). Note that the

same index appearing in di�erent binding scopes represents di�erent variables. Vice-versa, occurrences of

the same variable appearing in di�erent binding scopes are denoted by di�erent indices.

Free variables can also be represented by de Bruijn indices. In that case, it is necessary to �x an

enumeration, namely a referential, x1; x2; : : : ; xn, of free variable names. If the occurrence of a variable is

denoted by an index n and the number of �-symbols in the binding scope of that occurrence is less than n,

say m, then that occurrence of n represents the free-variable xn�m of the referential. For instance, the term

(�x:(y x) z) can be encoded as (�(2 1) 2) under the referential y; z and as (�(3 1) 1) under the referential

z; y.

The formulation of the rules � and � for �dB-terms requires the following functions for updating and

substitution of indices.

De�nition 2.2 Let M 2 �dB. The i-lift of M , denoted M+i is de�ned inductively as follows

1. (M1 M2)
+i = (M+i

1 M+i
2 );

2. (�N)+i = �N+(i+1);

3. n+i =

�
n+ 1; if n > i

n; if n � i

The lift of a term M is its 0-lift and is denoted brie
y as M+.

De�nition 2.3 The application of the substitution with N at the depth n � 1 on a term M , denoted

MfN=ng, is de�ned inductively as follows

1. (M1 M2)fN=ng = (M1fN=ng M2fN=ng);

2. (�M)fN=ng = �MfN+=n+ 1g;

3. mfN=ng =

8<
:

m� 1; if m > n

N; if m = n

m; if m < n

De�nition 2.4 The rules � and � are de�ned for the set of �dB-terms as follows

(�M N)
�
- MfN=1g

�(M 1)
�
- N; if N+ =M

Example 2.5 The �-term (�x:(�y:(x z) x) (z �z:(x z))) can be translated under the referential x; y; z

into the �dB-term (�(�(2 5) 1) (3 �(2 1))). Furthermore, we have

(�x:(�y:(x z) x) (z �z:(x z)))
�
- (�y:((z �z:(x z)) z) (z �z:(x z))):

We examine in detail the steps of that reduction for �dB-terms:

(�(�(2 5) 1) (3 �(2 1)))
�
- (�(2 5) 1)f(3 �(2 1))=1g

= ((�(2 5))f(3 �(2 1))=1g 1f(3 �(2 1))=1g)

= (�(2 5)f(3 �(2 1))+=2g (3 �(2 1)))

= (�(2 5)f(3+ �(2+1 1+1))=2g (3 �(2 1)))

= (�(2 5)f(4 �(3 1))=2g (3 �(2 1)))

= (�(2f(4 �(3 1))=2g 5f(4 �(3 1))=2g) (3 �(2 1)))

= (�((4 �(3 1)) 4) (3 �(2 1)))
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The �dB-term (�((4 �(3 1)) 4) (3 �(2 1))) represents the term (�y:((z �z:(x z)) z) (z �z:(x z))) under

the given referential. �

Example 2.6 Notice that

�((��(5 (1 2)) 4) 1)
�
- (��(4 (1 2)) 3)

since

(��(4 (1 2)) 3)+ = ((��(4 (1 2)))+ 3+)

= (�(�(4 (1 2)))+1 3+)

= (��(4 (1 2))
+2

3+)

= (��(4+2 (1 2)+2) 3+)

= (��(4+2 (1+2 2+2)) 3+)

= (��(5 (1 2)) 4)

�

2.2 Simply-typed �-calculus

The �-calculus is a simple, but yet powerful formalism. As we said before, when used as a logical framework,

the �-calculus allows to encode paradoxes. To solve that problem, Church developed a typed version of the

�-calculus [11] with happens to be a simpli�cation of the Type Theory of Whitehead-Russell [59].

The e�ect of typed �-calculus can be seen on a term such as �x:(x x) which is a well formed term in the

untyped �-calculus that represents the abstract concept of \self-application". The meaningfulness of this

concept may be questioned and was involved in many of the logical paradoxes from the beginning of the

twentieth century. Thinking about x as a functional variable from A to A or of \type A!A", the application

(x x) is forbidden, since it's impossible to apply a function of type A!A to an argument of type A!A.

This coincides with the conception of functional objects assumed by most mathematicians. Of course, if z

is a variable of type A, the typed expression �x:(x (x z)) makes sense. For a formal introduction to the

theory of the simply-typed �-calculus plentiful of interesting historical remarks see [30].

In a typed �-calculus, �-terms are strati�ed in several categories, namely types. A type, in the simple type

theory, can be a basic type a; b; : : : or a functional type A!B, where A and B are types. We use upper-case

letters A;B : : : to range over types. Only terms that follow a type discipline are considered to be valid. The

type discipline is enforced by a set of typing rules. Thanks to the typing rules, Russell's paradox cannot be

expressed in the simple type theory.

Typed �-terms are elements of the set of �-terms except that bound variables in abstractions have type

annotations, i.e., they have the form �x:A:M . Rules � and � are modi�ed accordingly:

(�x : A:M N)
�
- MfN=xg and �x : A:(M x)

�
- M , if x 62 FV (M)

A typing judgment � `M : A denotes that the term M has type A in �, where � is a context, i.e., a list

x1:A1; : : : ; xn:An of variable declarations. Henceforth, we use Greek letters �;�; : : : to range over contexts.

Figure 1 shows the typing rules of the simply-typed �-calculus. We say that a �-term M is well typed in �

if and only if there exists a type A such that � ` M : A, and we say that a type A is inhabited in � if and

only if there exists a �-term M such that � `M : A.

The presentation of the typed �-calculus used in this paper corresponds to the Church-style. In this

presentation, typed �-terms are elements of the set of �-terms except for abstractions, which have type

annotations. An alternative presentation, called Curry-style, considers typed �-terms as standard �-terms

without type annotations. In that case, type variables should be considered. Indeed, in a typed �-calculus �a

la Curry, the type of �x:x is �!� where � denotes any type (See [4]).

Type checking is decidable for the simply typed �-calculus. That is, there is a method to decide whether

or not a term has a type in a given context according to the typing rules. As the untyped version of the
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x 62 �
(Start)

x:A;� ` x : A
x 62 � � `M : B

(Weak)
x:A;� `M : B

x:A;� `M : B
(Abs)

� ` �x:A:M : A!B
� `M : A!B � ` N : A

(Appl)
� ` (M N) : B

Figure 1: The simply-typed �-calculus

1 � i � n
(Var)

A1:A2:: : : An ` i : Ai

A:� `M : B
(Abs)

� ` �A:M : A!B
� `M : A!B � ` N : A

(Appl)
� ` (M N) : B

Figure 2: The simply-typed �-calculus for �dB-terms

�-calculus, the simply-typed �-calculus enjoys the Church-Rosser property and therefore it is also con
uent.

Furthermore, it also satis�es the following properties.

� Subject reduction, if � `M : A and M
��
- N , then � ` N : A;

� Type uniqueness, if � `M : A and � `M : B, then A = B;

� Strong normalization, ifM is a well typed term, thenM has no reductions of in�nite length. Therefore,

due to the con
uence property, normal-forms of well typed terms always exists and they are unique.

In the de Bruijn setting of the simply typed �-calculus, a context � is a list of types A1:: : ::An where Ai

is the type of the free-variable represented by the index i. The empty context is denoted by �. Simply-typed

�dB-terms are de�ned by the typing rules of Fig. 2.

2.3 Curry-Howard isomorphism

There is a strong relation between type theory and intuitionistic logic. Indeed, if we identify types with

propositions, where an arrow type is an implication, typing rules of the simply-typed �-calculus corresponds

one to one to deduction rules of a minimal intuitionistic logic. In other words, typing rules are logical rules

decorated with typed �-terms. This principle is known as the Curry-Howard isomorphism.

Consider an intuitionistic minimal logic where propositional formulas are built from atomic propositions

a; b; : : : and the implication, i.e., if A and B are formulas then A!B is a formula. We use uppercase Greek

letters 
 to range over set of formulas. We write 
; A as a shorthand for 
 [ fAg. A judgment 
 `I A

denotes that A is a logical consequence of 
. A judgment is said provable (in the minimal intuitionistic

logic) if and only if it is derived by top-down application of the following rules:

(Axiom)

; A `I A


; A `I B (Intro)

 `I A!B


 `I A!B 
 `I A (Elim)

 `I B

A formula A is a tautology if and only if the judgment `I A is provable. For example, the formula

A!((A!B)!B) is a tautology since it can be derived as follows:

(Axiom)
A;A!B `I A!B

(Axiom)
A;A!B `I A

(Elim)
A;A!B `I B

(Intro)
A `I (A!B)!B

(Intro)
`I A!((A!B)!A)
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Formally, the Curry-Howard isomorphism says that 
 `I A is provable in the minimal intuitionistic

logic if and only if � ` M : A is a valid typing judgment in the simply-typed �-calculus, where � is a list

of variable declaration of propositions, seen as types, in 
. The term M is a �-term that represents the

proof derivation. For instance, the term decoration of the tree derivation above results in the valid typing

judgment ` �x:A:�y:A!B:(y x) : A!((A!B)!A).

The Curry-Howard isomorphism is extended to intuitionistic �rst order and higher order logics and it

is widely studied in proof theory. It is at the base of mathematic formalizations where proofs are just

mathematical objects. Such languages are the base of automatic systems for proof construction, program

veri�cation and program synthesis.

3 Explicit Substitutions

Implicitness of substitution is the Achilles heel of the �-calculus. Namely, the �-calculus is a convenient and

compact model of the computable functions but it does not provide any mechanism for observing essential

operational properties of these functions as time and space complexity. The reason of this is that the

substitution involved in �-reductions does not belong in the calculus, but rather in an informal meta-level.

In the practice, �-reduction is not a primitive operation and is implemented based on a substitution generally

elaborated by renaming variables and/or maintaining some variable convention. That makes impossible to

determine or bound in time and space the �-reduction.

The ��-calculus was the �rst one presented formally as a mechanism for making explicit substitution

in the �-calculus [1]. But before this, today widely considered seminal work, many empiric and theoretic

e�orts were realized in order to solve the problem of implicitness of the substitution operation. From the

theoretical point of view, the Combinatory Logic of Curry and Feys [18] proposed the �rst solution to this

problem. However, this setting does not remain close to the �-calculus and the number of primitive steps

can be extensively larger than the required by explicit substitution calculi. From the empirical point of view,

perhaps the person who provide the foundations to take care of this problem was de Bruijn itself, when

developing his system AUTOMATH from the middle of the 1960's. Part of his primary conceptions was the

previously here mentioned nice nameless notation for the �-calculus [19] and his legacy is collected in [51].

Since the ��-calculus was introduced in [1], several other variants of explicit substitution calculi have

been proposed (see, for example, [55, 38, 32, 7, 39, 17, 35, 43, 24, 44]). These calculi implement several styles

of explicit substitutions.

We will focus our attention on two of these styles: the ��- and the �se-styles. Both of them use a nameless

notation based on the de Bruijn index notation, which is completely insensitive to �-conversion. That allows

a clean and elegant meta-theoretical study of the calculi which make them suitable for implementation of

declarative programming languages, higher order proof assistants, and automated deductive systems. Both

styles were shown incomparable in [34].

The ��-calculus and its variants have been proposed as a general framework for higher order uni�cation

and term synthesis [21, 22, 9, 36, 45, 47, 46, 6]. Furthermore, calculi of the ��-family have been incorporated

with success into programming languages and proof assistants. For example, an algorithm for pattern

uni�cation for dependent types, based on ��, has been implemented in the Twelf system [53]. It has also

been relevant in the improvement of the explicit substitution for the rewrite calculus (�-calculus [14]) of the

ELAN system, which provides a language based on rewrite rules for specifying and prototyping deductive

systems [13].

The �se-calculus [32, 33] was developed more recently than the ��-calculus and its main claimed advan-

tage over the ��-calculus is that it remains as close as possible to the �-calculus having only one sort of

objects. There is a close relation, until now only subjectively purposed, between the �se-calculus and the

rewrite rules developed by Nadathur and Wilson in the early 1990's and used in the implementation of the

higher order logic programming language �Prolog [41]. For instance the laziness in the substitution needed

in implementations of �-reduction, that arises naturally in the �se-calculus, is provided as the informal but

empirical concept of suspension of substitutions by Nadathur and Wilson rewrite rules, being their notion of

substitution more general than the �se one. More recently their rewrite rules were published in the context

of explicit substitution as the suspension calculus [49, 50]. Establishing formally the relations and di�erences

between the �se-calculus and the suspension calculus remains as an important work to be done.
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(�M N) �! M [N � id] (Beta)

(M N)[S] �! (M [S] N [S]) (App)

(�M)[S] �! �M [1 � (S Æ ")] (Abs)

M [S][T ] �! M [S Æ T ] (Clos)

1[M � S] �! M (VarCons)

M [id] �! M (Id)

(S1 Æ S2) Æ T �! S1 Æ (S2 Æ T ) (Assoc)

(M � S) Æ T �! M [T ] � (S Æ T ) (Map)

id Æ S �! S (IdL)

S Æ id �! S (IdR)

" Æ (M � S) �! S (ShiftCons)

1 � " �! id (VarShift)

1[S] � (" Æ S) �! S (SCons)

�(M 1) �! N if M =� N ["] (Eta)

Figure 3: The ��-calculus [1]

3.1 The ��-calculus

The ��-calculus is a �rst order rewrite system with two sorts of expressions: terms and substitutions. In

fact, substitutions inherent to the �-rule in de Bruijn index notation, (�M N)
�
- MfN=1g, are delayed

and recorded in the ��-calculus as (�M N) - M [N � id]. Here, M [N � id] is a ��-expression representing

M with a recorded substitution N � id. Additional rules are necessary for applying the recorded substitution

to the term M , i.e., replacing all the the free occurrences of the de Bruijn index 1 at M with N and

decrementing by one all the rest of free de Bruijn indices over M . Delaying application of substitution

is widely used in implementations of functional and logical programming languages, because performing

immediately substitution may give rise to a size explosion of the expressions.

De�nition 3.1 (��-calculus) The ��-calculus is de�ned by the rewrite system depicted in Fig. 3 where

Terms M;N ::= 1 j �M j (M N) jM [S]

Substitutions S; T ::= id j " jM � S j S Æ T

The rewrite system obtained by dropping rules (Beta) and (Eta) of �� is called �.

In ��, de Bruijn indices are encoded by means of the constant 1 and the substitution ". We write "n as

a shorthand for

n-timesz }| {
" Æ : : : Æ ". We overload the notation i to represent the ��-term corresponding to the index

i, i.e.,

i =

�
1 if i = 1

1["n] if i = n+ 1:

This one-shift encoding is interesting because involving a built-in deduction mechanism for arithmetic in

implementations of systems based on the ��-calculus makes it diÆcult the analysis of time and space quan-

titative performance. But in any conceivable implementation one should use full indices at the meta-level

instead of the one-shift encoding.

An explicit substitution denotes a mapping from indices to terms. Thus, id maps each index i to the

term i, " maps each index i to the term i+ 1, S Æ T is the composition of the mapping denoted by T with

the mapping denoted by S (notice that the composition of substitution follows a reverse order with respect

to the usual notation of function composition), and �nally, M � S maps the index 1 to the term M , and

recursively, the index i+ 1 to the term mapped by the substitution S on the index i.
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(�M N) �! M [N � "0] (Beta)

(�M)[S] �! �M [1 � (S Æ "1)] (Abs)

(M N)[S] �! (M [S] N [S]) (App)

M [S][T ] �! M [S Æ T ] (Clos)

1[M � S] �! M (VarCons)

M ["0] �! M (Id)

(M � S) Æ T �! M [T ] � (S Æ T ) (Map)

"0 Æ S �! S (IdS)

"n+1 Æ (M � S) �! "n Æ S (ShiftCons)

"n+1 Æ "m �! "n Æ "m+1 (ShiftShift)

1 � "1 �! "0 (Shift0)

1["n+1] � "n+2 �! "n+1 (ShiftS)

�(M 1) �! N if M =L N ["1] (Eta)

Figure 4: The rewrite system �L

The ��-calculus is not a con
uent rewrite system [17], however it is con
uent on ground expressions [1]

and con
uent on substitution-closed expressions (i.e., expressions without substitution variables) [55]. On

the other hand, the �-calculus, i.e., �� without (Beta), is con
uent and terminating [1].

A term is called pure if it does not contain substitutions. Notice that the set of pure terms in �� and

the set of �dB-terms are identi�able. Furthermore, the ��-calculus simulates the �-calculus [17], i.e., the

relations induced by
�
- and

(Beta)
-

�
�

- (one step of (Beta) followed by a �-normalization) coincide

on pure terms. However, the ��-calculus does not preserve strong-normalization of the �-calculus [40], i.e.,

strongly normalizing �-terms can be reduced forever in ��.

3.2 The �L-calculus

As pointed out before, the one-shift encoding of indices in �� is a theoretically convenient feature, but

impractical for implementations. Nadathur also remarked in [48] that the non-left-linear rule of ��, namely

(SCons), is diÆcult to handle in real implementations. Instead of rule (SCons), he suggested the meta-rule

1["n] � "n+1 - "n. Since "n is a shorthand in ��, an in�nite set of rules is represented by this scheme.

Non-left-linear rules are not only annoying to implement, but they are usually responsible for non-

con
uence and typing problems. Indeed, �� is not con
uent [17] and it does not preserve typing in a

dependent-type system [45], both problems because of the non-left-linearity of the calculus.

The �L-calculus [44] is a left-linear variant of �� where "n is a �rst-class substitution. This allows the

formulation of the rule suggested by Nadathur as a regular �rst order rule. In fact, instead of (SCons), the

the �L-calculus has the following rule: 1["
n+1] � "n+2 - "n+1.

De�nition 3.2 (�L-calculus) The �L-calculus is de�ned by the rewrite system depicted in Fig. 4 where

Natural numbers n ::= 0 j n+ 1

Terms M;N ::= 1 j �M j (M N) jM [S]

Substitutions S; T ::= "n jM � S j S Æ T

The L-rewrite system is obtained by dropping rule (Beta) from �L.

We adopt the notation i as a shorthand for 1["n] when i = n+1. Substitutions id and " are written in �L
as "0 and "1, respectively. In general, "n denotes the mapping of each index i to the term i+ n. Using "n,

the scheme of rule proposed by Nadathur can be encoded in a �rst order rewrite system. Natural numbers

are constructed with 0 and n+ 1. Arithmetic calculations on indices are embedded in the rewrite system.

The �L-calculus is con
uent on substitution-closed expression and it simulates the �-calculus [45]. Just

as ��, it does not preserve strong normalization.

8



(�M N) �! M �1N (�-generation)

(�M)�iN �! �(M �i+1N) (�-�-transition)

(M1 M2)�
iN �! ((M1 �

iN) (M2 �
iN)) (�-app-transition)

n�iN �!

8<
:

n� 1 if n > i

'i0N if n = i

n if n < i

(�-destruction)

'i
k
(�M) �! �('i

k+1M) ('-�-transition)

'i
k
(M1 M2) �! (('i

k
M1) ('i

k
M2)) ('-app-transition)

'i
k
n �!

�
n+ i� 1 if n > k

n if n � k
('-destruction)

(M1 �
iM2)�

j N �! (M1 �
j+1N) �i (M2 �

j�i+1N) if i � j (�-�-transition)

('i
k
M)�j N �! 'i�1

k
M if k < j < k + i (�-'-transition 1)

('i
k
M)�j N �! 'i

k
(M �j�i+1N) if k + i � j (�-'-transition 2)

'i
k
(M �j N) �! ('i

k+1M)�j ('i
k+1�j N) if j � k + 1 ('-�-transition)

'i
k
('

j

l
M) �! '

j

l
('i

k+1�j M) if l + j � k ('-'-transition 1)

'i
k
('

j

l
M) �! '

j+i�1
l

M if l � k < l + j ('-'-transition 2)

�(M 1) �! N if M =se
'2
0N (Eta)

Figure 5: Rewriting system of the �se-calculus

Another left-linear variant of �� is the ��*-calculus [17]. The ��*-calculus is a con
uent �rst order

rewrite system, i.e., it is con
uent on presence of both term and substitution variables. However, ��*
raises some technical problem with �-conversions due to the fact that substitutions id and 1 � " are not

��*-convertible.

3.3 The �se-calculus

The �se-calculus avoids introducing two di�erent sets of entities as the ��-calculus does, insisting in this

way on remaining close to the syntax of the �-calculus. Next to abstraction and application, the �se-calculus

introduces substitution (�) and updating (') operators.

De�nition 3.3 (�se-calculus) The �se-calculus is given by the rewrite system in Fig. 5 and the grammar

M;N ::= n j (M N) j �M jM�jN j 'i
k
M for n; j; i � 1 and k � 0:

The calculus of substitutions associated with the �se-calculus, namely se, is the rewriting system generated

by the set of rules se = �se � f�-generation;Etag.

Intuitively, the substitution operator, �, initiates (rule (�-generation)) one-step of �-reduction, from

(�M N), propagating the associated substitution innermost (rules (�-�) and (�-app-transition)). Once this

propagation is �nished, when necessary, the updating operator, ', is introduced to make the appropriate lift

over N (rule (�-destruction)). Otherwise either free de Bruijn indices are decremented by one or bounded

maintained.

The �se-calculus simulates �-reduction and is con
uent [33]. It does not preserve strong normalization

[28].

3.4 Simply-typed calculi of explicit substitutions

In this section, we only include the essential notation of the simply-typed �L- and �se-calculi. Properties

can be found in detail in [44] and [32], respectively. Typing rules in both calculi follow the scheme as those

of the simply-typed ��-calculus [21].
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(Var)
A:� ` 1 : A

A:� ` N : B
(Lambda)

� ` �A:N : A!B

� `M : A!B � ` N : A
(App)

� ` (M N) : B
� ` S . � � `M : A

(Clos)
� `M [S] : A

(Id)
� ` "0 . �

� ` "n . �
(Shift)

A:� ` "n+1 . �

� `M : A � ` S . �
(Cons)

� `M � S . A:�
� ` T . �2 �2 ` S . �1 (Comp)

� ` S Æ T . �1

Figure 6: Typing rules for the �L-calculus

(Var)
A:� ` 1 : A

� ` n : B
(Varn)

A:� ` n+ 1 : B

A:� ` N : B
(Lambda)

� ` �A:N : A!B
� ` N : A!B � `M : A

(App)
� ` (N M) : B

��i ` N : B �<i:B:��i `M : A
(Sigma)

� `M �iN : A

��k:��k+i `M : A
(Phi)

� ` 'i
k
M : A

Figure 7: Typing rules for the �se-calculus

The rewrite rules of the typed �L- and �se-calculi are de�ned by adding to their respective set of rules

the necessary typing information. Thus, for the simply-typed �L-calculus we have the typed rules:

(�A:M N) �! M [N � "0] (Beta)

(�A:M)[S] �! �A:M [1 � (S Æ "1)] (Abs)

�A:(M 1) �! N if M =L N ["1] (Eta)

and for the typed �se-calculus:

(�A:M N) �! M �1N (�-generation)

(�A:M)�iN �! �A:(M �i+1N) (�-�-transition)

'i
k
(�A:M) �! �A:('

i

k+1M) ('-�-transition)

�A:(M 1) �! N if M =se
'2
0N (Eta)

Typing rules for the �L-calculus and the �se-calculus are presented in the Figures 6 and 7, respectively.

Notice that in the case of the �L-calculus, substitutions receive contexts as types. This is denoted as

� ` S . �. Let � be a context of the form A1:A2:::An:�. We use the notation ��k and ��k for denoting

the contexts A1:::Ak and Ak:::An:�, respectively. This notation is extended for \<" and \>" in the obvious

manner.

Example 3.4 In order to illustrate the use of the typing rules, we show how to infer the type of the term

�A!B :�B!C :�A:(2 (3 1)) in �se.

For short, let � = A:B!C:A!B. Firstly, observe that

(Var)
(1) � ` 1 : A

(Var)
B!C:A!B ` 1 : B!C

(Varn)
(2) � ` 2 : B!C

(Var)
A!B ` 1 : A!B

(Varn)
B!C:A!B ` 2 : A!B

(Varn)
(3) � ` 3 : A!B

10



Then, we have

(2)

(3) (1)
(App)

� ` (3 1) : B
(App)

� ` (2 (3 1)) : C

Finally, notice that

� ` (2 (3 1)) : C
(Lambda)

B!C:A!B ` �A:(2 (3 1)) : A!C
(Lambda)

A!B ` �B!C :�A:(2 (3 1)) : (B!C)!(A!C)
(Lambda)

` �A!B :�B!C :�A:(2 (3 1)) : (A!B)!((B!C)!(A!C))

For the �L-calculus the inference is identical except for the �rst steps; for instance, notice that

(Id)
B!C:A!B ` "0 . B!C:A!B

(Shift)
� ` "1 . B!C:A!B

(Id)
A!B ` "0 . A!B

(Shift)
B!C:A!B ` "1 . A!B

(Comp)
� ` "2 . A!B

Then,

� ` "2 . A!B
(Var)

A!B ` 1 : A!B
(Clos)

� ` 3 : A!B

Remember that the language of the �L-calculus only includes the de Bruijn index 1 and the others are

simulated using the "n. �

The simply-typed versions of the �L- and �se-calculus satisfy, among others, the properties of subject

reduction and type uniqueness. Additionally, they are Weakly Normalizing (WN) and Church-Rosser (CR).

4 Applications

Although in an intuitionistic logic, the concepts of propositions and types are identi�ed, proof construction and

term synthesis do not necessarily go in the same direction. For instance, to prove the proposition A!(B!A),

one may assume A as an hypothesis and then, recursively, try to prove (B!A). Eventually, one gets the

axiom A;B ` A and the proof derivation is completed. On the other hand, the proof synthesis procedure,

decorates with �-terms the proof-tree derivation from the axioms, to set up the variable declarations, i.e.,

x:A; y:B ` x : A, down to the conclusion.

In order to synthesize a �-term at the same time as a proof is being developed, it is necessary to represent

incomplete-proofs. Assume, for example, the proposition A!(B!A). The bottom-up application of the rule

(Abs) results in a term �x:A:X where X is a term to be constructed of type (B!A). A term as �x:A:X

is called an open term and the place-holder X denotes a hole to be �lled with a term of the right type, in

this case of type (B!A). Place-holders are also called meta-variables to distinguish them from the variables

of the �-calculus. Meta-variables are written as uppercase (X;Y; : : : ) last letters of the Latin alphabet. At

some moment during the proof derivation, we get the typing judgment x:A;� ` �y:B:x : (B!A). Hence, to

obtain a close term, i.e., a term without meta-variables, we can instantiate the meta-variableX with the term

�y:B:x. This results in �x:A:�y:B:x. In contrast to substitution of variables, instantiation of meta-variables

is a �rst order replacement that does not care of renaming of bound variables or capture of free-variables.

Notice, however, that open terms are not �-terms. In fact, (1) instantiation and �-reduction do not

commute, and (2) instantiation and typing do not commute. To illustrate the �rst point, take the open term

(�x:X y) and the instantiation of X with x. The instantiation results in (�x:x y), which �-reduces to

y. However, the original term �-reduces to X , which gets instantiated as x. To see why instantiation and

11



typing do not commute, consider the context � = x:A; z:(B!A)!C and the open term (z �x:B:X) of type

C, where X is a meta-variable of type A. If we instantiate X with the variable x of �, then we obtain the

ill-typed term (z �x:B:x).

Meta-variables can be encoded in classical �-calculus by using a technique taken from the higher order

uni�cation tradition [31]. This technique uses a functional handle of scope. For instance, the open term

�x:A:Y , where Y is a meta-variable of type B, is encoded as the �-term �x:A:(y x), where y is a fresh

variable of type A!B. In this case, the information that the variable x can indeed occur in a subsequent

substitution of y is taking into account by the application (y x). Thus, an instantiation of Y with M in the

original problem is translated as a substitution of y by �x:A!B:M in the �-calculus. Notice, however that

the meta-variable Y has the type B while the corresponding variable y has the type A!B.

Explicit substitutions and de Bruijn indices allow a simple and natural notation for open terms. First,

in a de Bruijn setting, meta-variables are just variables of the free algebra of terms. Notice that bound and

free variables of the �-calculus are represented as indices. And second, explicit substitution calculi as ��,

�L, and �se, are con
uent on open terms (in the case of �� and �L, on substitution-closed terms). Thus, in

these calculi, commutation of instantiation and the �-reduction is for free.

We will consider meta-variables over a set X .

De�nition 4.1 The set �dB(X ) of �-terms in de Bruijn index notation with meta-variables over the set X

is de�ned inductively as

M;N ::= n j X j (M N) j �M

where n 2 N
>0 ; X 2 X .

De�nition 4.2 A valuation is a mapping from X to �dB(X ). The homeomorphic extension of a valuation,

�, from its domain X to the domain �dB(X ) is called the grafting of �.

As usual valuations and their corresponding graftings are denoted by the same Greek letters. Application

of a grafting � to a term M will be written in post�x notation M�. For explicit representation of a valuation

and its corresponding grafting �, we use the notation � = fX 7! X� j X 2 Dom(�)g. A grafting is the

formal concept for meta-variable instantiation.

The set of ��-, �L-, and �se-terms with meta-variables, and their respective grafting notion, can be

de�ned in a similar way. The typing rule for meta-variables in these systems is [21]:

(MetaX)
�X ` X : AX

where AX and �X are, respectively, a unique type and a unique context associate to each meta-variable. By

using this rule, typing and instantiation of meta-variables commute [21].

4.1 Higher order uni�cation

Higher order uni�cation (HOU) is essential in automated reasoning, where it has formed the basis for

generalizations of the Resolution Principle in higher order logics, being a sine qua non mechanism in the

implementation of higher order proof assistants and higher order logic programming languages as the ones

previously referenced. For a very simple presentation of HOU see [58] and for a detailed introduction in the

context of declarative programming see [54]. As for the �rst order case, substitution is the key operation for

HOU and its implicitness makes diÆcult the analysis of important computational properties. Therefore, use

of calculi of explicit substitution in the formal implementation of HOU procedures is relevant.

HOU problems are expressed in the language of the simply-typed �-calculus in de Bruijn indices over a

set of meta-variables X , denoted �dB(X ). Meta-variables play the role of uni�cation variables. A simple

example of a HOU problem is to search for function solutions F of the equality F (f(a)) =? f(F (a)). That can

be written in �dB(X ) as (X (2 1)) =?
��

(2 (X 1)), where both X and 2 are of functional type, say A!A

and 1 of atomic type A. A solution for X is the function identity, �A:1 but f�A:(3 1); �A:(3 (3 1)); : : : g

(correspondingly, fF = f; F = f2; : : : g) are solutions too.
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The �rst person to present a HOU algorithm of practical interest was Huet [31]. Huet's work was relevant

because he realized that to generalize Robinson �rst order Resolution Principle [56] to higher order theories

it is useful to verify the existence of uni�ers without computing them explicitly. Huet's algorithm is a semi-

decision one that may never stop when the input uni�cation problem has no uni�ers, but when the problem

has a solution it always presents an explicit uni�er. Uni�cation for second-order logic was proved undecidable

in general by Goldfarb [26]. Goldfarb's proof is based on a reduction from Hilbert's Tenth Problem. This

result shows that there are arbitrary higher order theories where uni�cation is undecidable, but there exist

particular higher order languages of practical interest that have a decidable uni�cation problem. In particular,

for the second-order case, uni�cation is decidable, when the language is restricted to monadic functions [23].

Another problem of HOU is that the notion of most general uni�er does not apply and that a notion more

complex than the one of complete set of uni�ers is necessary. Huet has showed that equations of the form

(�x:F a) =? (�x:G b) (called 
ex-
ex) of third-order may not have minimal complete sets of uni�ers and

that there may exist an in�nite chain of uni�ers, one more general than the other, without having a most

general one (for references see section 4.1 in [54]).

The general method of HOU via calculi of explicit substitutions was introduced in [21] (for the ��-

calculus) and consists mainly in: �rstly, a translation or \pre-cooking" from HOU problems in �dB(X ) into

the language of a calculus of explicit substitutions. Secondly, an application of (�rst order) uni�cation in the

selected calculus of explicit substitutions to solve the translated problems. Finally, translation back of the

given grafting solutions into substitution solutions of the original HOU problem. In this way HOU problems

are solved via �rst order uni�cation in the language of calculi of explicit substitution. We will explain with

examples how reduction relations from the simply-typed ��-calculus and �se-calculus of explicit substitutions

are used to solve HOU problems in �dB(X ). For a formal presentation of the methods consult [21] and [2].

De�nition 4.3 Let � = fX1 7! a1; : : : ; Xn 7! ang be a valuation from the set of meta-variables X to

�dB(X ). The corresponding substitution, fa1=X1; : : : ; an=Xng, also denoted by � but written in a pre�x

notation, is de�ned inductively as follows

1. �(m) = m, for m 2 N;

2. �(X) = XfX1 7! a1; : : : ; Xn 7! ang, for X 2 X ;

3. �(a1 a2) = (�(a1) �(a2));

4. �(�a1) = ��+(a1);

where �+ denotes the substitution corresponding to the valuation �+ = fX1 7! a+1 ; : : : ; Xn 7! a+
n
g.

Unifying two terms M and N in �dB(X ) consists in �nding a grafting � such that its corresponding

substitution satis�es �(M) =�� �(N). Notice that application of a grafting has a di�erent e�ect to the

application of its corresponding substitution. For instance, although (�X)fX 7!Mg = �M , a uni�er of the

problem �X =?
��

�M is not fM=Xg, since (�X)fM=Xg = �(XfM+=Xg) = �M+. However, by translating

appropriately the �dB(X )-termsM;N , the HOU problemM =?
��

N can be reduced to �rst order uni�cation

either in the ��- or in the �se-calculus. Essentially, the pre-cooking translation from terms in �dB(X ) into

the language of the ��-calculus replaces each occurrence of a meta-variable X with X ["k], where k is the

number of abstractors above the occurrence of X . For the case of the �se-calculus the pre-cooking translates

each occurrence of a meta-variable X into 'k+1
0 X , where k is as before.

Example 4.4 Consider the problem 2 =?
��

(X 2) being 2 of type A and X of type A!A. Introducing a

fresh meta-variable Y of type A the problem is translated into 2 =?
��

(�Y 2) ^X =?
��

�Y .

In the �se-calculus the problem is normalized into 2 =?
�se

Y �12^X =?
�se

�Y , whose solutions are f1=Y g

and f3=Y g giving as result the solutions f�1=Xg and f�3=Xg.

In the ��-calculus the problem is normalized into 2 =?
��

Y [2:id] ^ X =?
��

�Y , from where we infer the

solutions above. �
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Example 4.5 Now consider the HOU problem 2 =?
��

(�Z 2), where 2 and Z are of type A.

In the �se-calculus the problem is pre-cooked into 2 =?
�se

(�'2
0Z 2) and then transformed into 2 =?

�se

('2
0Z)�

12 and subsequently into 2 =?
�se

'1
0Z by normalization. The sole possible solution given is fZ 7! 2g.

Observe, on the one side, that (�'2
0Z 2)fZ 7! 2g = (�'2

02 2) =�se
(�3 2) =�se

3�12 =�se
2. On the other

side, turning back the pre-cooking transformation, this corresponds to the substitution solution f2=Zg for

the original problem. In fact, (�Z 2)f2=Zg = ((�Z)f2=Zg 2f2=Zg) = (�(Zf2+=Zg) 2) = (�3 2). The

previous term �-reduces into 2.

In the ��-calculus the problem is pre-cooked into 1["] =?
��

(�Z["] 1["]) which ��-reduces into 1["] =?
��

(Z["])[1["]:id] and subsequently into 1["] =?
��

Z[" Æ(1["]:id)] and into 1["] =?
��

Z[id] and �nally into 1["] =?
��

Z giving the corresponding sole solution fZ 7! 1["]g. This corresponds to the above grafting solution in

�se. On the one side, (�Z["] 1["])fZ 7! 1["]g = (�((1["])["]) 1["]) =�� (�1["2] 1["]) =�� 1["2][1["]:id] =��

1["2 Æ(1["]:id)] =�� 1["]. On the other side, turning back the pre-cooking transformation, this corresponds

to the substitution solution f2=Zg for the original problem in �dB(X ) as above.

Notice that f1=Zg is not a substitution solution of the previous problem, since for any de Bruijn index

n we have (�Z)fn=Zg = �(Zfn+=Zg) = �(n+ 1). �

The following example illustrates why pre-cooking of �-terms before applying uni�cation rules is essential.

Example 4.6 (Continuing example 4.5) In the �se-calculus, when normalizing the HOU problem 2 =?
��

(�Z 2) before pre-cooking we obtain 2 =?
�se

Z�12, whose solutions are the graftings fZ 7! 1g and fZ 7! 3g.

As previously mentioned f1=Zg is not a substitution solution of the original HOU problem. Analogously, in

the ��-calculus, when normalizing the corresponding problem 1["] =?
��

(�Z 1["]) we obtain 1["] =?
��

�Z[1["

]:id], whose solutions are fZ 7! 1g and fZ 7! 1["2]g given rise to the same problem. �

4.2 Type inference

In order to infer types of �-terms (or ��-terms or �se-terms) we deal with new sets of type variables �i and

context variables 
i, i 2 N. Essentially, we will take as input of a type inference problem a term without

knowing its type and context and as output we will formulate a �rst order uni�cation problem on type and

context variables. Well-typedness of the input term will then corresponds to solvability of the generated

�rst order uni�cation problem. Here we illustrate the general method above mentioned using the language

of the �se-calculus. Simple modi�cations according to the typing rules of the selected language will adapt

this method to other settings.

Let M be a �se-term. Initially, we introduce new variables for the type and for the context of each

subterm of M . Then M can be seen as a new term M 0 with all its subterms decorated with one di�erent

type variable as subscript and one di�erent context variable as superscript.

Example 4.7 (�A:(�B :(�C :(2

1
�1

(3
2
�2

1
3
�3
)
4
�4
)
5
�5
)
6
�6
)
7
�7
)
8
�8
, where �i and 
i, i = 1; :::; 8 are new mutually

di�erent type and context variables, is the decorated version of the �-term �A:�B :�C :(2 (3 1)). �

Afterwards, we apply the set of transformation rules in Table 1 for pairs of the form hR;Ei, where R is

a set of decorated terms and E a set of equations on type and context variables. The application of these

transformation rules begin from the par hR0; ;i, where R0 is the set of all decorated subterms of M 0.

Notice that the transformation rules in the Table 1 are built according to the typing rules of the �se-

calculus. After the application of each of the transformation rules the size of the current set of decorated

subterms R decreases by one. Consequently, the application of these rules beginning from the pair hR0; ;i

�nishes after a �nite number of steps (exactly as many steps as subterms in M) giving as result an empty

set of decorated terms and a set Ef of equation on type and context variables. Ef is a �rst order uni�cation

problem on type and context variables.

Finally, our algorithm terminates by applying any �rst order uni�cation algorithm toEf . If the uni�cation

algorithm fails then our term is ill-typed. Otherwise, if the uni�cation algorithm succeeds, the most general

uni�er resulting as output gives straightforwardly a context � and a type A such that � `M : A. Of course,
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Table 1: Transformation rules for type inference in the �se-calculus

(Var) hR [ f1

�
g; Ei ! hR;E [ f
 = �:
0gi, where 
0 is a fresh context variable;

(Varn) hR [ fn

�
g; Ei ! hR;E [ f
 = � 01:::�

0

n�1:�:

0gi, where 
0 and � 01; :::; �

0

n�1 are

fresh context and type variables;

(Lambda) hR [ f(�A:M

1
�1
)
2
�2
g; Ei ! hR;E [ f�2 = A!�1; 
1 = A:
2gi;

(App) hR [ f(M
1
�1

N
2
�2
)
3
�3
g; Ei ! hR;E [ f
1 = 
2; 
2 = 
3; �1 = �2!�3gi;

(Sigma) hR [ f(M
1
�1
�iN
2

�2
)
3
�3
g; Ei ! hR;E [ f�1 = �3; 
1 = � 01:::�

0

i�1:�2:
2; 
3 = � 01:::�
0

i�1:
2gi,

where � 01; :::; �
0

i�1 are fresh type variables and in the case

that i = 1 the sequence � 01:::�
0

i�1 is empty;

(Phi) hR [ f('i
k
M
1

�1
)
2
�2
g; Ei ! hR;E [ f�1 = �2; 
2 = � 01:::�

0

k+i�1:

0; 
1 = � 01:::�

0

k�1:

0gi,

where 
0 and � 01; :::; �
0

k+i�1 are fresh context and type vari-

ables and in the case that k � 1 respectively k = 0 and

i = 1 the sequences � 01:::�
0

k�1 respectively � 01:::�
0

k+i�1 are

empty;

(Meta) hR [ fX


�
g; Ei ! hR;E [ f
 = �X ; � = AXgi, where �X ` X : AX ;

the construction of � and A is done from the bindings given in the resulting uni�er corresponding to the

outermost context and type variables selected in the decoration of M .

Correctness and completeness of this method is a direct consequence from the correctness and com-

pleteness of the �rst order uni�cation and of the typing rules of the �se-calculus used to construct the

transformation rules in Table 1.

Example 4.8 (Continuing Example 4.7) The initial input for the set of inference rules is hR0; ;i, where R0 =

f2
1
�1
; 3
2

�2
; 1
3

�3
; (3
2

�2
1
3
�3
)
4
�4
; (2
1

�1
(3
2
�2

1
3
�3
)
4
�4
)
5
�5
; (�C :(2


1
�1

(3
2
�2

1
3
�3
)
4
�4
)
5
�5
)
6
�6
; (�B :(�C :(2


1
�1

(3
2
�2

1
3
�3
)
4
�4
)
5
�5
)
6
�6
)
7
�7
;

(�A:(�B :(�C :(2

1
�1

(3
2
�2

1
3
�3
)
4
�4
)
5
�5
)
6
�6
)
7
�7
)
8
�8
g.

In the sequel, we show the steps of the application of the transformation rules. For convenience we

apply the rules in an speci�c order (from smaller to bigger subterms), but the application of the rules is

nondeterministic. Applying the rules in any order we will obtain di�erent sets of equations that correspond

to the same uni�cation problem.

hR0; ;i !Var
hR1 = R0 n f1


3
�3
g; E1 = f
3 = �3:


0

1gi !Varn
hR2 = R1 n f2


1
�1
g; E2 = E1 [ f
1 = � 01:�1:


0

2gi !Varn
hR3 = R2 n f3


2
�2
g; E3 = E2 [ f
2 = � 02:�

0

3:�2:

0

3gi !App
hR4 = R3 n f(3


2
�2

1
3
�3
)
4
�4
g; E4 = E3 [ f
2 = 
3; 
3 = 
4; �2 = �3!�4gi !App

hR5 = R4 n f(2

1
�1

(3
2
�2

1
3
�3
)
4
�4
)
5
�5
g; E5 = E4 [ f
1 = 
4; 
4 = 
5; �1 = �4!�5gi !Lambda

hR6 = R5 n f(�C :(2

1
�1

(3
2
�2

1
3
�3
)
4
�4
)
5
�5
)
6
�6
g; E6 = E5 [ f�6 = C!�5; 
5 = C:
6gi !Lambda

hR7 = R6 n f(�B :(�C :(2

1
�1

(3
2
�2

1
3
�3
)
4
�4
)
5
�5
)
6
�6
)
7
�7
g; E7 = E6 [ f�7 = B!�6; 
6 = B:
7gi !Lambda

h; = R7 n f(�A:(�B :(�C :(2

1
�1

(3
2
�2

1
3
�3
)
4
�4
)
5
�5
)
6
�6
)
7
�7
)
8
�8
g; E8 = E7 [ f�8 = A!�7; 
7 = A:
8gi

Now the reader is invited to apply his/her preferred �rst order uni�cation algorithm for resolving the uni�-

cation problem E8 = f
3 = �3:

0

1; 
1 = � 01:�1:

0

2; 
2 = � 02:�
0

3:�2:

0

3; 
2 = 
3; 
3 = 
4; �2 = �3!�4; 
1 = 
4; 
4 =


5; �1 = �4!�5; �6 = C!�5; 
5 = C:
6; �7 = B!�6; 
6 = B:
7; �8 = A!�7; 
7 = A:
8g and then to resolve

the bindings of the resulting uni�er (if it exists) for giving appropriate contexts and types for the input

�-term. �

4.3 Inhabitation and higher order logics

Given a type A and a context of variable declarations �, the inhabitation problem consist in �nding a term

M such that � ` M : A. Using the open term approach, the problem can be formulated as �nding a

pure instantiation for the meta-variable X satisfying � ` X : A. Thus, the term to instantiate X can be
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x:A;� `M : B x:A;� ` B : fType;Kindg
(Abs)

� ` �x:A:M : �x:A:B
� `M : �x:A:B � ` N : A

(Appl)
� ` (M N) : BfN=xg

Figure 8: Rules (Abs) and (Apl) for the CC type system

constructed at the same time as the proof derivation of A is done by applying the typing rules in a bottom-up

manner and introducing new meta-variables for the unknown terms.

For the simply-typed �-calculus this problem is decidable. In fact, since provability in the minimal

propositional intuitionistic logic is decidable, the term M can be built directly from the proof-tree derivation

of 
 `I A, where 
 is the set of types in �, as explained before. However, when we move to a �rst order or

a higher order intuitionistic logic and, in consequence, we extend the type system to handle quanti�cation,

the problem becomes much more complicated. In [47], it has been presented a semi-algorithm to solve

the inhabitation problem via the �L-calculus and open terms. It uses the fact that �L is con
uent on

substitution-closed terms and weakly normalizing, even for dependent type settings of the calculus.

Although �rst and higher order logics are out of the scope of this paper, we give some hints of the

inhabitation problem for these kind of logics. See [20] for a complete description of a term synthesis algorithm

in the Cube of Type Systems and [47] for a similar algorithm via explicit substitutions and open terms.

The Dependent Type theory, namely �� [29], is a conservative extension of the simply-typed �-calculus.

It allows a �ner strati�cation of terms by generalizing the function space type. In fact, in ��, the type of

a function �x:A:M is �x:A:B where B (the type of M) may depend on x. Hence, the type A!B of the

simply-typed �-calculus is just a notation in �� for the product �x:A:B where x does not appear free in

B. The Calculus of Constructions, namely CC, [15, 16] extends the ��-calculus with polymorphism and

constructions of types. From a logical point of view, �� and CC allow representation of proofs in the �rst

and higher order intuitionistic logic, respectively. Via the types-as-proofs principle, a term of type �x:A:B

is a proof-term of the proposition 8x:A:B.

Terms in these calculi can be variables, applications, or abstractions, like in classical �-calculus, or

two new kind of terms: products (�x:A:B), and sorts (Type;Kind). Term and types belong to the same

syntactical category. Thus, �x:A:B is a term, as well as �x:A:M . However, terms are strati�ed in several

levels according to a type discipline. For instance, given an appropriate context of variable declarations,

�x:A::M : �x:A::B, �x:A::B : Type, and Type : Kind. The term Kind cannot be typed in any context,

but it is necessary since a circular typing as Type : Type leads to the Girard's paradox [25]. In Fig. 8 we

give rules (Abs) and (Appl) for the CC type system.

The �L-calculus has been extended with products for the �� and CC-type systems in [45]. These

variants satisfy the same properties as the simply-typed version: con
uent on substitution-closed terms,

weakly-normalizing, and subject reduction. For further details we refer to [45].

Example 4.9 We can proof the �rst order predicate (8x:(P x))!(P c) by �nding a term X of type

(�x:A:(P x))!(P c) in a context where the term c has the type A and P has the type A!Type. The

bottom-up application of rule (Abs) results in a term X having the form �y:(�x:A:(P x)):Y where Y is a

term of type (P c) in a context where the variable y has the type �x:A:(P x). If we instantiate Y with

the term (y c), which is a well typed term of type (P c), we obtain the term �y:(�x:A:(P x)):(y c) of

type �x:(�x:A:(P x)):(P c). Notice that in this example we have used the meta-variables X and Y and

the instantiation mechanism of meta-variables to build incrementally a proof. �

Typing of meta-variables is more complicated in dependent-type systems than in the simply-type case.

Since meta-variables can appear in terms, types, and contexts, the typing rules should take care of possible

circular dependences.

5 Conclusion

The �-calculus uses an external and atomic operation to compute the substitutions of variables by terms.

Calculi of explicit substitutions improve the substitution mechanism by allowing substitutions to be part
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�� �L �se ��* �� �� �d �x ��

Con
uence Mv Mv
��

^
��

^
��

^ Gnd Gnd Gnd Gnd

Normalization Wk Wk Wk Wk PSN PSN PSN PSN PSN

Composition
��

^
��

^
��

_
��

^
��

_
��

_
��

�? ��

_
��

_

Finitary 1st-order
��

^
��

^
��

_
��

^
��

^
��

^
��

^
��

_
��

_

Variables dB dB dB dB dB dB dB Nm Lv

Number of rules 13 12 13y 19 13 8 19 6 10y

�-reduction
��

^
��

^
��

^
��

^
��

�z
��

^
��

^
��

^
��

^

Reference [1] [44] [32] [17] [43] [38] [35] [8] [39]

��
^ : The general property holds.
��
_ : The property does not hold.
��

� : The property holds with restrictions.

Mv : Con
uence on semi-open expressions, i.e. only with meta-variables of terms.

Gnd : Con
uence on ground expressions.

Wk : Weak normalization on typed terms.

PSN : Preservation of strong normalization.

dB : De Bruijn indices notation of variables.

Nm : Variable names.

Lv : De Bruijn levels notation with variable names.

? : Restricted composition. In particular, the �d-calculus does not allow simultaneous

substitutions.

y : Number of schemes. The �se-calculus is not �nitary.

z : Big-step semantic of �-reduction. The ��-calculus does not simulate each step of

�-reduction.

Figure 9: Some calculi of explicit substitutions

of the formal language by means of special constructors and reduction rules. There are several versions of

calculi of explicit substitutions. Figure 9 summarizes the main characteristics of some of them. All these

calculi implement the �-reduction by means of a lazy mechanism of reduction of substitutions.

In this paper we have explored new developments and applications on two of the most successful styles

of explicit substitution: �� and �se.
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