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Abstract

Large-scale distributed hypermedia systems comprise a generation of powerful tools
to meet the demands of the new information globalization era. The most promising of
such systems have characteristicsthat allow for the easy adaptation both to an, actually,
unpredictable technol ogical evolution and to the constantly evolving information needs
of users. Such systems are generally known as Open Hypermedia Systems (OHS).
Recently, research effort has been focused on the formulation of a solid set of OHS
standards (i.e., protocols, reference models and architectures) that would stem from a
common understanding and thus, direct future implementations. Unfortunately,
sophisticated hypermedianotionslike composite nodes and dynamic linking, still found
in older, monoalithic hypermedia systems, have been overlooked or roughly portrayed.
This paper presents a distributed system architecture implemented on top of a
hypermediamodel for OHS, which captures notions like these and sets the foundation
for straightforward implementations. The proposed hypermedia model comprises a
HypermediaDataModel, which isextensible and fulfils a series of OHS requirements,
and a Structural Model, which ensures controlled hyperdocument construction and
flexible dynamic linking. Aspects of a prototype hypermediaserver (Aristotle), which
has been the testbed for this architecture, are discussed.

Keywords: Open Hypermedia Systems, Hypermedia Modeling, Distributed
Information Systems
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1. Introduction

The hypermedia structural and navigational paradigm is now widely accepted as the cornerstone for
distributed information environments. Thisis primarily manifested by the success of the World-Wide
Web (WWW). Undoubtedly, the WWW is the most widely used distributed hypermedia system. Its
voluminous data content ceaselessly expands together with the complexity of its link structure.
However, the hypermediamodel adopted by the WWW issimpleasit primarily aimsat the construction
of widely distributed hypertext and focuses, in alesser degree on multimedia support, collaboration,
link integrity and integration of new mediatypesand external applications. Theseissueshaveattracted
theinterest of researchers. The coordinated effortstowardstheir resol ution have led to the devel opment
of Open Hypermedia Systems (OHS). In contrast to OHS, which provide for external, n-ary and bi-
directional links, the WWW, based on the HTML standard [1], suffersfrom a series of shortcomings
[2]:

« Thedangling link problem: if a node has been physically moved or renamed, or if its content has

been altered, it is possible that some link becomesinvalid (i.e., cannot be traversed).

* Only the owner of a hode can create links departing from the document, while links to specific
parts of anode can be made only if the owner has created the relevant destination anchors.

e Thereisnoway to retrieve information about incoming links, aslinks are strictly uni-directional.
In abroader sense, no link sharing and reusing is foreseen.

« Itisimpossibleto define different set of outgoing links on the same node. Consequently, thereis
no way to implement custom “views’ of the hypergraph for different user needs.

« Aslinksareunary and cannot overlap, it isimpossible to refer to more than one destination nodes
from a single source anchor, or to define more than one anchors in the same location.

e The majority of WWW authors have not exploited link (and node) typing, which promotes
understanding of the conceptual relationship between interlinked nodes [3], even though link
typesare modestly supported in HTML . We claim that the reason for thisis the absence of ameta-
model, an ontol ogical framework where meta-model ers can define and share conceptual schemata
or ontologies. Thisisalso justified by the strong interest that has been shown for WWW meta-data
modeling [4].

« Span-to-Spanlinks can only be created between HTML pagesand thereisno provisionfor defining
anchorsin images, audio or video.

The OHS community has agreed on the need for external link storageto avoid such problems. Hence,
in most approaches, links are treated as “first-class’ hypermedia objects. Historically, the Dexter
Reference Model [5] was one of thefirst widely accepted abstract model s that posed the requirement
for external link storage. Thereafter, all OHSs conform to this requirement. According to the first
OHP proposal [6], the term open implies the possibility of importing new objects into a system. In
the case of hypermedia systems this can be further specialized as:

1. Scalability: import every kind of hypermedia objects without limitation, regarding the size or

the number of objects that the system can accommodate.

2. DataFormats. support of any dataformat, including temporal media. Asnoted in [7], no mark-
up upon the data should be imposed which prevents them from being accessible from other,
external to OHS, native viewers or editors.

3. Applications: the set of external applications, which have accessto hypermedia services, should
be open. Nevertheless, the exact process of integrating an external application may vary from
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building a specialized client (e.g., Hyper-G Harmony client [8]) to integrating third-party
applications (e.g., Microcosm [9]).

4. Data Modéels: the hypermedia system should not impose a single view on what constitutes a
hypermedia data model. Instead, it should promote extensibility and be configurable so that,
new data models could be incorporated. This is also referred to as heterogeneity [10] and isa
crucia factor in the interoperability between hypermedia systems. Heterogeneity is hard to be
achieved asit introduces implications regarding the functional part of the system: in the case of
major changes of the datamodel, the provided services might cease functioning or, at least, they
should also be updated. A candidate solution isto de-couple the linking functionality from the
rest of the system and “embed” the linking model information into separate linking services.
However, this simply shifts the problem to the client-side i.e., special “thick” clients should be
availablefor every different linking serviceto handle both different linking models and different
mediatypes. Another, more compromising direction, isto de-couple media specific detailsfrom
pure hypermedia concepts. The advantage is that the clients remain “thin”, as they need to be
aware of asinglemodel. Thisissue is more complicated asthereisno consensus within the OHS
Research Group (OHSRG) on which services congtitute the “core” of an OHS[32]. In any case,
well-known notions like anchors, links, nodes, composites, and presentation specifications
(pspecs) should be captured [33].

5. Distribution: the system and the integrated services, application and data stores must be capable
of being distributed across different platforms and network locations.

6. Users: the system must support multiple concurrent users, cater for concurrency control, access
permissions and allow users to maintain their own private view of the hypermedia objects and
structures. As noted in [3], collaboration support should also be provided.

7. Computation: the system should al so provide dynamic and virtual structures, whose construction
is managed either automatically (e.g., generic links in Microcosm), or performed by the user
(e.g., structure-based or content-based search queries).

The issue of hypermedia content storage has driven research/implementation efforts towards two
directions [10]. The first, described as the “Link Service Systems’ (L SS) approach, focuses on the
provision of hypermedia functionality to client applications, orthogonally to display and storage
functionality [11]. Systems like DLS, Chimera and Microcosm fall into this category. The second
direction has been followed by “Hyperbase Management Systems’ (HBMS) and, apart from the
hypermedia services, also ensures content storage on integrated or external distributed data sources.
Examplesfrom this category are DHM, HyperDisco and Hyper-G. We should stress that, beyond the
differences of these approaches, there isacommon need to store and manipul ate hypermedia objects
and structures, as for example the demand for external (to content) storage of links depicts. The gap
between these two approaches is further narrowing as the mutual influence has led HBMS to be
deployed as part of open, extensible and distributed architectures and LSS to incorporate storage,
collaboration and versioning facilities [11].

The fulfillment of the aforementioned requirements is not a trivial task. Examining WWW against
these requirementsreveal sthat only “ Scalability” and “ Distribution” arefully satisfied, while part of
the“Users’ requirement isal so met. To provide an integrated sol ution, this paper suggeststhe coupling
between OHS principles and existing/upcoming WWW standards (e.g., XML). Thisarchitecture has
been based on ageneric datamodel for OHS, which captures notionslike composites and transclusion
[24]. The core entity of thisarchitectureisthe Aristotle hypermediaserver. The suggested hypermedia
model decomposesinto a HypermediaDataModel, which fulfills OHS requirements, and a Structural
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Model, which ensures controlled hyperdocument construction and flexible dynamic linking. Asthe
overall architecture complieswiththe® Applications’ requirement, atypical WWW browser istreated
as another client application that may participate in hypermedia functionality and retain its native
format (HTML) and transport mechanism (HTTP).

The paper is organized asfollows. Section 2 presents the Aristotle server system architecture and its
components. Section 3 discusses the underlying model. Section 4 evaluates our approach against
OHStaxonomies and abstract models. Finally, Section 5 presents our conclusions and future research
directions.

2. System architecture

Theoverall system architectureispresented in\h Figure 1. Aristotle servershave amodular architecture,
which facilitates upgrade and promotesaclear decomposition of complex proceduresto simplerequest/
reply dialogs between modules and through well-defined interfaces.
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Figure 1: Aristotle Server system architecture

Every Aristotle server stores hypermediainformation (but not content) into an HBMS, which in the
case of our prototype, isaRDBMS (Microsoft SQL Server). In general, the server iscapable of using
any RDBM Sthat has some connectivity interface. Inter-server communication is based on the Server
to Server Open Hypermedia Protocol (S2SOHP). Client applications communicate with Aristotle
servers through the Client to Server Open Hypermedia Protocol (C2SOHP). Both protocols have
beenformally defined as XML DTDs. Hence, encoding of messages producesvalid XML documents.
In the next paragraphs we discussin detail the modules of the proposed architecture, their functional
role and their interaction.
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2.1 Clients

In recent bibliography various approaches for integrating third-party applications in an OHS have
been proposed. Most of these introduce some “integrator” or “wrapper” entity, which enhances
applicationswith hypermediacapabilities. Inthe Chimerasystem [12] thisentity has beenimplemented
as aprogramming library for the UNIX environment. The Devise system [13] employs DDE, OLE
and HTTP to communicate with client applications. Analogously, the WebVise system [2] is based
on COM for theintegration of M S-Office applications and uses acombination of HTTP/ proxy inthe
case of WWW browsers. The HyperDisco [10] hasdemonstrated theintegration of Emacsand XEmacs
[11] editorsthrough macro programming. In another well-known OHS, the HyperG/ Hyperwave [8],
aset of custom clients has been developed (Harmony, Amadeus). Sincethese clientsareintrinsically
“hypermedia-aware”, they directly communicate with HyperG serversover TCP. In addition, HyperG
employs the technique of a pseudo-httpd to integrate regular WWW browsers. The Microcosm ([7],
[14]) was one of thefirst OHSto demonstrate theintegration of third-party applications, with various
“degrees’, using DDE and M S-Windows clipboard. Microcosm'’s evolution led to the Microcosm
TNG ([15], [16]) and accompanied with an essential decoupling from specific communication
techniques: a set of special entities, like the Daemon, Router, Process Manager etc., took the
responsibility for client integration and communication. We concludethis brief review withthe DL S/
Agent DLSapproach ([17] and [18]), which, similarly to HyperG, employsHT TP dialogsto integrate
WWW browsers.

Most of the aforementioned approaches exhibit a certain inflexibility to re-use communication
components. For example, consider the case of two applications that are capable of communicating
DDE calls. It would be possiblefor asingle“ DDE gateway” component to establish DDE connections
simultaneously with both applications and manage the flow of DDE requests/ replies. This type of
“communication” re-use influenced the design of the Client Integration Layer of Aristotle.

The core entity of this layer is the Client Integration Module (CIM) service, which communicates
directly with Aristotle servers via the C2SOHP. For every integrated application, a local registry
stores information about the hypermedia objects it can handle and the services it offers, along with
XML -encoded, communicati on-depended serviceinvocation instructions (termed Service Invocation
Script, SIS). Conceptually, aregistry entry isatupple:

Media Type, Location Addressing, Hypermedia Object, Service on the Hypermedia Object, SIS
The actual definition of such atuppleisasfollows:
<DST, DLT, HOT, SN, SIS>

where the DST refers to the Data Source Type and DLT to the Data L ocation Type that describe the
mediatype and the addressing scheme for media content, the Hypermedia Object Type (HOT) refers
to the hypermediadatamodel object classfor which the serviceis offered and the Service Name (SN)
is the unique identifier of the hypermedia service. DST, DLT and HOT will be explained shortly in
section 3.
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When such a service isinvoked (e.g., “present atext node”), the CIM service consults the registry,
locatesthe appropriate “gateway” and spawnsan instance of it. After the activation of the“ gateway”,
the CIM service forwards the service request in the form of an XML-encoded SIS. The “ gateway”
uses the native communication mechanism of the application (e.g., DDE, OLE etc.) to forward the
reguest and accept any response, which will then be forwarded back to the CIM service.

We claim that thisarchitecture promotes component re-use, simplifies client integration and increases
expandability. The re-use advantage is rather obvious, considering that the same set of “gateways’
may support communication with asuperset of applications, afeaturethat ismissing from “wrapper” -
oriented approaches. Clients are not exposed to C2SOHP thus they may be easily integrated since
they need not incorporate XML parsing/ composing capabilities. Dueto thefact that the SIS encodes
services, altering a service in most cases simply means to update the SIS rather to re-program the
application. Finally, the set of “gateways’ is interminable expandable and new “gateways’ may be
added even at run-time. Thislast featureisfeasible since the " gateway” -to-CIM service communication
is based on dynamic objects (COM), object late binding and a solid “gateway” -to-CIM protocol.

In pursuit of greater performance, the decoupling of control messages and media content flow was
adopted. Control messages implement the C2SOHP and bi-directional flow from CIM service to
“gateways’. A special part of the CIM, termed Transporter, undertakes the transfer of the actual
media content (e.g., the string content of a“text” node, the binary content of an “image” node etc.).
This multi-threaded service dynamically allocates direct socket connections with its peer entity of
the Aristotle server(s) that will provide or should receive the media content of some node.

A special typeof clientsisthe Aristotle Client. Theseare external applications, specifically implemented
for communicating with Aristotle Servers and capable of presenting a specific type of mediacontent.
A wide range of Aristotle Clients have been developed (TextClient, HTMLClient, ImageClient,
VideoClient and SoundClient). All these clients achieve maximum hypermedia functionality (e.g.
anchor creation, link traversal etc.) according to the underlying Data Model.

2.2 Client to Server Open Hypermedia Protocol (C2SOHP)
Module

This module implements the C2SOHP protocol (not presented here) that is employed for the
communication with client applications. The C2SOHP messages are encoded in XML [19] and the
protocol has been defined asan XML DTD. Hence, the discussed modul e undertakes the role of an
XML parser/ composer. XML was preferred for the protocol encoding asit is straightforwardly usable
over the Internet. It is also easy to create and process XML documents while the language inherits
attractive features of the SGML without the relevant complexity. This module also handles network
communication with CIM.

2.3 Server-to-Server Open Hypermedia Protocol (S2SOHP)
Module

This module implements the S2SOHP protocol (not discussed in this paper) that is employed for
inter-Server communication. Similarly to the C2SOHP, S2SOHP messages are encoded in XML.
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The module encompasses XML parsing/ composing functionality but does not undertake any network
communication as the Routing Module provides such services. Since the formal definition of the
protocol islocally stored (asaDTD), it is possible to update/ expand S2SOHP simply by updating
the relevant DTD (the same also holds for the C2SOHP).

2.4 Routing Module (RM)

In a large-scale distributed environment, no assumptions can be made about the total nhumber of
servers. Maintaining an exhaustivelist of addressing information is considered atroublesome approach.
Asandternative, we have devel oped arouting a gorithm based on server clusters, random transmission
of messages (flooding, analogoudly to [20]) and message signatures. The agorithm supports uni-
cast, multi-cast and broadcast transmission and ensures message ddlivery. The Routing Modulereceives
messages from the S2SOHP Modul e and routes them to the appropriate peer Module of thereceiving
Server(s) using this routing algorithm.

2.5 Hypermedia Service Module (HSM)

HSM isthe core module, which coordinates other modules and implements the program logic of the
hypermediabehavior asit isspecified in the Hypermedia& Schema Classes (discussed in subsequent
paragraphs). The translation of C2SOHP to S2SOHP messages (and vice versa) is aso afunction of
the HSM. With the proposed distinction between hypermedia and content specific information
(discussed in Section 3), the HSM remains independent from media-specific details; thus, adding
support for a new media types does not affect its operation. The HSM has been formally defined
using the Vienna Design Methodology (VDM-SL) and is neutral to specific implementations.

2.6 Hypermedia & Schema Classes

Hypermedia Classesis a set of object classes that implement the proposed Hypermedia Data Model.
Analogously, Schema Classesimplement the Hypermedia Structural Model. A detailed discussion of
Hypermedia Classes can befound in Section 3. The Hypermedia Structural Model comprisesavisual
notation and formal specifications for the definition of hypermedia schemata. If such a schemais
applied to a hyperdocument, it ensures the semi-structured and controlled expansion of the
hyperdocument. Extensive discussion on schema-based hyperdocuments can be found in [21] and
[22].

2.7 Content Description Classes

The purpose of Content Description Classes isto model media-specific meta-information, which is
required to (physically) locate amedia component or (logically) apart of acomponent. Two distinct
but interrelated object specialization hierarchies exist:

(a) Data Source Type (DST) Hierarchy: In principle, the node elements of this hierarchy correspond
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todiscrete, intermsof mediatype, data sources. Each element incorporatesall the necessary properties
to physically locate the mediacontent, along with the decl aration of the access method to be employed.
This hierarchy may expand; hence new media types could easily be integrated.

(b) DataL ocation Type (DLT) Hierarchy: The elementsof thishierarchy providethemeanstologically
describe parts of a specific Data Source Type. The description of a part can be static or dynamic.
Intuitively, in the first case, the attributes of the DST are interpreted as coordinates in some n-
dimensional space where the content of a certain type of Data Source may be addressed, resembling
aHyTime-like approach. For instance, this spaceis:

» 1-dimensional for text and a start/ length pair of numbers defines a part of the text,
» 2-dimensional for image thus, two pairs for coordinates are required and

« 3-dimensional for video (2-dimensional for defining the “shape”’ anchor, plus one dimension to
define time in the sense of alist of frame numbers), etc.

The definition of a dynamic location (e.g., aquery in arelational DBMS) is accomplished through
some script, which is media-specific and interpreted by a specified Connector of the Content Access
M odul e (discussed in subsequent paragraph). Even though the script isnot interpretable by the HSM,
the latter module has access to a Script I nterface Definition (SclD), having the following structure:

« Name: A text giving a short description of the Script.
» Description: A more analytical description of the Script.

« InParameters:. A list of tuples[PName, Type, Size, Vaue] wherethe PNameisthe uniqueidentifier
of the parameter across the Script Interface Definition, Type gets avalue from a predefined set of
supported data types, Size defines the size (in bytes) for the parameter and, finally, Value stores
the current parameter value (e.g., [“Start”, INTEGER, 2] defines an integer-valued parameter
with name “ Start”).

e OutParameters: Similarly to InParameters, thislist describes output parameters.

The proposed system initially defines the specialization hierarchies shown in \h Figure 2, but both
hierarchies can be expanded in order to incorporate new mediatypes.

DLOCATION
DSOURCE

FILE DB

/ \ TEXT FILE BIN FILE 00 RELATIONAL
TEXT_FILE BIN_FILE 00 RELATIONAL

1 INN ( XJH NN

XML ~ VIDEO AUDIO  IMAGE
HTML TAG XML _TAG

Figure 2: Data Source Type and Data L ocation Type object hierarchies

Two remarks should be made. Firstly, for each DST at |east one corresponding DLT must exist. This
ensures that parts of the content of a specific DST can be retrieved. If the DST is related with more
that one DL Tsthen more that one media-dependent part definitions are provided. Secondly, the content
of acertain DST isaddressable by the corresponding DLT, and a so by theimmediate and therecursive
predecessors of the DLT. Asan example, consider aTEXT_FILE DST instance, which can be accessed
as awhole, with a corresponding FILE DLT instance, or only a part of it can be retrieved using the
corresponding TEXT_FILE DLT instance.
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Figure 3: Entity-Relationship diagram of the adopted relational modeling for Data Source Types
and Data L ocation Types

Thetype hierarchiesis partly equivalent to the “Within-Component Layer” of the Dexter Reference
Model, as they do not carry hypermedia semantics but only media descriptive information. In order
to ensure the expandability of the two hierarchies, these have been modeled as relational tables. All
the relevant information iskept in thelocal Hyperbase. The relevant Entity-Relationship diagram, is
presented in \h Figure 3 using the IDEF1x [23] notation. Following this modeling approach, the
addition of support for a new mediatype is achieved in four steps:

1. The server receives a C2SOHP request by some client for the addition of anew DST.
2. The HSM updates the relevant tables of the local Hyperbase.
3. Then, the DTDs of the C2SOHP and S2SOHP protocols are automatically expanded to include

element and attribute definitions for the newly added data type. The conversion of anew DST to
XML DTD elements, follows the rules given below:

* A new XML element iscreated.

e All DST properties that occur once are converted to XML attributes of the mentioned
element.

« All DST propertiesthat may have multiple occurrences are converted to XML elements
and then added to the definition of the first XML element.

4. Possibly, anew Connector (see Section 2.8) istransferred and added to the Content AccessModule
or one of the available Connectorsis re-used to ensure media access.

The strong advantage of this mechanism isthat support for a new mediatype can be introduced, not
only by avoiding re-programming some part of the server, but even without disrupting the normal
operation of the server. Furthermore, this reconfiguration can be made remotely (through C2SOHP
and under authentication control), thus maximizing server’s capability to support new mediaa most
instantly and minimizing administrative cost.

2.8 Content Access Module (CAM)

The Content Access Module comprisesthe CAM service and acollection of autonomous components,
called Connectors. The crucial requirements for “Data formats’ and “ Scalability” are best achieved
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if the system remains transparent to data formats and access details. The role of the Connector entity
isto ensure such transparency by “gluing” the rest of Aristotle architecture with an open-ended set of
data sources (e.g., OS files, RDBMSs etc.). Every Connector implements three basic functions,
READ_LOC, WRITE_LOC, REMOVE_L OC. Each function takes as arguments, information about
the client who made the request, a DST and one or more DSL instances. Additionally, two more
functions may be supported, CONNECT_DS and DISCONNECT_DS with only client information
and a DST instance as arguments. The application of location composition (discussed in section 3)
remains under the responsibility of Connectors. In the current state of our prototype, Connectors for
text, image, sound and video files, aswell asan RDBM S Connector have been devel oped.

The CAM service maintains registration information about Connectors in order to be able to
communicate with them. Every Connector is related (bound) with one or more DSTs. The CAM
service acts asamediator, i.e., it makes use of relevant registration and binding information in order
to serve an incoming (HSM originated) request for data. As soon as a Connector decodes function
call parameters and performs data read/writw operation, the Transporter element undertakes
communication control. This element establishes a direct Socket connection with its peer entity of
theclient-sidein order to transfer the requested data. Thereby, communication bottlenecks are avoi ded
and data transfer is more efficient since it is distributed to many threads of the Transporter and is
managed in parallel.

In our prototype, CAM entities communicate trough a message queuing mechanism (MSMQ). Initial
experimental resultshave shown that CAM performance rangesfrom 970 requestsminto 750 requests/
min, depending on the type of requested data and the number of location compositions (see Section
3).

3. Hypermedia Data M odel

The proposed model is an abstract open hypermedia model comprising six basic classes. For every
class we present its properties. The value of a property can be system provided, user provided or
masked. A masked property is a production rule whose value can be computed from other property
values. An example of a masked property is the unique object identifier (UID). Furthermore, some
properties after been given avalue, retain thisinitial value for therest of theinstance'slife. Thistype
of propertiesistermed write-once (w-0) to distinguish from the usual (write-many) properties.

3.1 Data Sources (DS) A Data Source is an abstract description of some data store

(e.g., afile) or supplier (e.g., aDBMS). A DS instance includes information about where to find the
data that makes up its content and how to access them. The definition of a DS has as follows:

« UID: Unique object identifier across hypermedia (masked).

e MigrationUID: The new UID of the object, in case the DS instance has been moved in the domain
of another server. (w-o, system provided)

» ServerlD: Theuniqueidentifier of the server that has accessto the DS. We note that more than one
server can refer more than once to the same DS (w-0).

e LocdlD: Thelocal identifier of the DSin the scope of the server ServerlD (w-0, system provided).
» SourceType: A property, whose value is an instance node of the Data Source Type hierarchy. This
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instance node describes the type of the DS and restricts the location definitions that can be,
subsequently, defined upon the DS. Depending on the DST definition, some properties of the
instance may be re-writable while others write-only.

» Content: The media content of the DS.

Upon creation of anew DS instance, anew DL isautomatically defined its location type covers the
whole content of the DS.

3.2 Data Locations (DL) A Data Location stores all the necessary information to

locate apart on the contentsof aDS. This classresembl esthe dataRef entity defined inthe Navigation
Domain Model proposed by the OHSWG [14], but itsroleis broader than just to define the persistent
location for an anchor. Three main enhancements are provided. Firstly, a DL serves as the building
block of the nodes. Secondly, it is capable of defining, both statically and dynamically, locations and
finally, apart from referring to a DS, it is possible to refer to another DL thus, providing location
abstraction. The properties of the class are:

» UID: Unique object identifier across hypermedia (masked).

» ServerlD: The unique identifier of the server that has access to the DL instance (w-0).

» LocdalD: Thelocal identifier of the DL inthe scope of the server ServerI D (w-0, system provided).

» ReferencelD: The unique identifier of the DS or another DL on which the DL defines a new
location (w-0).

» LocationType: The value of this property isan instance node of the Data L ocation Type hierarchy.
Depending onthe DLT definition, some properties of theinstance may be re-writable where others
write-only. LocationType can be left empty iff Referencel D is not empty.

» Content: The media content of the DL.

Different combinations of property valuesfor Referencel D and L ocationType provide three different
types of location abstractions. \h Figure 4 illustrates these types:

DL DL2
Rs

TT ——p ReferencelD
DL3 ——> LocationType

Figure 4: The three types of location abstraction that Data L ocation objects provide

In\h Figure 4, Data Source DS1 may be of any source type (e.g., atext file). DataLocation DL 1 has
been defined with the Referencel D pointing to the DS1 and its L ocationTypeincludesall the necessary
information to define a part into the contents of DS1 (e.g., start and length values). This type of
absolute location description is rather straightforward and can be found in the data models of the
majority of OHSs. Unlike DL1, Data Locations DS2 and DS3 depict a more elaborated type of
location abstraction and form the basis for the definition of complex entities like composite and
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abstract nodes. Data L ocation DL 2 only holdsaReferencel D to DL 1 and has an empty L ocationType.
Itsuseisideal in cases where we like to construct an abstract Node which “points’ to locations that
have not yet been “frozen” (i.e., DL1 marks a certain section in the DS1 while the editing of DS1 is
in-progress). In such cases, only the LocationType of the first DL has to be updated (i.e., DL1),
without any updates to referrer DLs (i.e., DL2). The last type of location abstraction is exhibited in
DL 3, which holds a Referencel D to DL1 and defines a new, relevant to DL 1s LocationType. The
obvious advantage is that the LocationType of DL3 remains valid even if the LocationType of DL 1
getsinvalid (i.e., in DS1 some text has been inserted before the LocationType of DL 1).

Webelievethat the overall update requirement in aconstantly evolving hypermediacorpusisexpected
to be drastically reduced by utilizing Referencel Ds pointing to other DLs (instead of those pointing
to DSs) and relevant L ocationTypes (instead of absolute L ocationTypes). A somewhat similar approach
has been followed in [13] with the introduction of location (LocSpec) and reference specifiers
(RefSpec). Theideathat influenced the definition of DL isnot new. It istermed “transclusion” [24]
and has been proposed from hypertext visionaries but, thereafter, ignored by hypermediaimplementers.
To avoid confusion with composite nodes, we stress that, although compositesintrinsically refer to
whole Nodes, transclusions refer to parts of aNode. A good example of the differences between the
two notions, is given in [25]: authors could build some policy documents using composites; storing
each clause as an atomic object and creating standard collections of clauses (composites) would
allow authorsto easily compose modular documents. But in the case of two documents differing only
in a part smaller than a clause, authors would be forced to create two distinct clauses, identical in
everything but the part, thereby loosing the notion (and operationa benefit) that these clauses essentially
areidentical. Through the use of DLstheoriginal clause needs not be copied and modified, aslong as
the appropriate DL s have been defined.

3.3 Anchors: inthe proposed model an Anchor instanceis an object that participatesin linking
and is defined in the context of a specific Node. An Anchor could be thought of asthe rendered part
of alink, which can be activated in order to traverse the link. The properties of the class are:

< UID: Unique object identifier across hypermedia (masked).

» ServerlD: The unique identifier of the server that has access to the Anchor instance (w-0).

« LocallD: Thelocd identifier of the Anchor in the context of its parent Node (w-0, system provided).
e ParentID: The uniqueidentifier of the Node that hosts the Anchor (w-0).

« DLocationlD: The unique identifier of the DL that provides the location for the Anchor. If |eft
empty, then an anchor to the whole Node is defined.

Unlike other modeling approachesthat bind an Anchor definition to a specific mediacontent or type
(either directly like Hyper-G [8] or indirectly likethe Dortmund Family [26]) we favor thede-coupling
of the Anchor definition from any media-specific information, through the DLocationlD property.
This ensures that an Anchor remains a neutral, “hyper-“ and not a“-media’ specific component of
the overall model. The advantages can be better understood if we consider the next two cases:

1. A DL with aLocationType gets invalid due to changes of the DS content that it refers to. The
Anchors that refer to this DL remain valid and the propagation of DS update is confined to the
DL.

2. Even though the DS remains unchangeable, some properties of its LocationType have been
updated (e.g., an image DL has been updated to represent some new area). All the same, the
Anchor needs not to be updated.
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3.4 NOdES: A nodeinstance is awrapper-object, which maintains a set of references to other
objects. The properties of the class are:

UID: Unique object identifier across hypermedia (masked).
ServerlD: The unique identifier of the server that has access to the Node instance (w-0).
LocallD: Thelocal identifier of the Nodein the scope of the server Serverl D (w-0, system provided).

DL ocationlD: A list of DL UIDswith binding information for Childl D elements. The mediacontent
of the Node comprises the resolved Content of the corresponding DLs and their child-Nodes. If
the list is empty, then the ChildID must contain at |east one element.

ChildID: A list of Node UIDs. A Node may behave like a composite node and, in this case, the
UIDsof thereferred Nodesareincluded inthe ChildID list. If thislistisempty then the DL ocationl D
must have at |east one element. When a new element is added to the ChildID, the DLocationlID is
extended with all or selected DL ocationl D items of the child Node and the AnchorID is extended
with all or selected AnchorlD items of the child Node.

AnchorlID: A list of Anchor UIDs. Thereferred Anchors must be defined over DL sthat are part of
the Node (e.g., their UIDs areincluded in DLocationl D list) or over DLsthat are part of the Child
nodes (e.g., their UIDs can be found is some DLocationl D of the child Nodes).

We emphasize that the Node class combines the notions of both atomic and composite components
asthey have been described in the Dexter Reference Model [5]. Also, it covers the important aspect
of customization. Before going into details of customization, we discuss the various methods for
defining composite Nodes, e.g., Nodes that hold references to other Nodes.

N2
DLocationID | ChildID
N1 AddRefer

N1 N3

DLocationID I ChildID DLocationID | ChildID

Gy - DL2 Nl AddCopy

r
o= | D2

15 N4

DLocationID JChildID

DL3 N1 AddPromote

DL4

Figure 5: Three different types of composite Nodes created using AddRefer, AddCopy and
AddPromote

The Dexter Reference Model has been criticized [27] for not making clear if acomposite component
storesacopy of the component it containsor if it referstoit. The proposed data model introducesthe
concept of DL, which deals with thisissue in an elegant and explicit way. When adding a new Node
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UID to the ChildID list of its parent Node, three distinct methods can be employed: AddRefer,
AddCopy, and AddPromote. The AddRefer method simply updates ChildI D list with the newly added
Node'sUID. The AddCopy method, apart from updating the ChildID list, a so extendsthe DL ocationl D
list by adding all (or selected) DL UIDs of the child Node. Finally, the AddPromote updates the
ChildID list, then creates a new set of DLs that refer to all (or some) DLs of the child Node and,
finally, appends them to DLocationID. The selection of the appropriate method substantially
differentiates the behavior exhibited by the composite node throughout its lifetime. For example
consider achild Node (N1) which comprisestwo DLsover asingle DS (\h Figure 5). Child Node N1
has been added in its parent Node N2 by calling AddRefer. That implies that al the locations that
have been included in N1 are also “visible” in N2 (by resolving, at run-time, the N1 entry of N2
ChildID list). In order to achieve greater flexibility, we add N1 in the ChildID of N3 using AddCopy.
In this case, we have the option to exclude some portion of N1 that we do not want to be “visible” in
N3 (i.e, DL1). Finaly, N4 exhibits the use of AddPromote where the DL4 selects a sub-location of
DL 2, leading to afiner granularity of what the visible part of DL2 will be. Special provision must be
taken for synchronizing the locations of a child node with the locations of its predecessors. In the
case of AddRefer, no such need really exists, as the resolution ensures an always up-to-date view of
a child. In the case of AddCopy and AddPromote, binding information is kept in the parent’s
DL ocationl D to associate a certain child UID with the relevant DLocationlD elements. In the case
that a location has been added (or removed) from a child Node, the parent Nodes capture the event
(through a S2SOHP message) and cascade updatein their DLocationl D. Just like child Locations, all
the Anchors of achild node may be“visible” to their predecessor or selectively some of themin case
AddCopy or AddPromote were applied.

The proposed Node modeling capitalizes on the location concept and offers a great flexibility to
construct simple atomic nodes or advanced composite nodes. In thislast case, the user decideswhich
Locations and Anchors will be “visible” in a composite node and, this, in turn, guarantees a better
customization and adaptation to hisinformation needs. On the other hand, most of the OHSsreferred
in this paper do not support composites and, in the case that composites are supported, they are
restricted to refer to whole nodes (i.e., corresponding to the AddRefer method) thus, no substantial
customization is supported.

3.5 Endpoints

An Endpoint is an object, which binds an Anchor to aLink object and storestraversing information,
which can take one of thefollowing values: source, destination or bi-directional. Wefavor thismodeling
approach, instead of expanding the Anchor class with directionality and link references, asit allows
for Anchor re-use in more than one links possibly with different directionality (a similar approach
has been adopted in [2], [14], [13] and [10]). An Endpoint instance has the following properties:

< UID: Unique object identifier across hypermedia (masked).

* AnchorUID: Anchor unique identifier. The relevant Anchor instance is part of the Link that the
Endpoint specifies (w-0).

e LinkUID: Link uniqueidentifier. Therelevant Link instanceincludesthe Anchor that the Endpoint
specifies (w-0).

 Direction: Defines the directionality of the Anchor in the context of the specific link. It assumes

one of the predefined values, source, destination and both. These values are interpreted on the
client-side at run-time, and determine the navigational behavior of the client.
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3.6 Links

A Link instanceis acollection of other object references. The core of aLink isalist of referencesto
the Endpoints that participate in the Link. The properties of the Link class are as follows:

» UID: Unique object identifier across hypermedia (masked).

» ServerlD: The unique identifier of the server that has accessto the Link instance (w-0).

» LocallD: Thelocal identifier of the Link in the scope of the server Serverl D (w-0, system provided).
» EndpointID: Thelist of the Endpoint UIDs that comprise the Link.

» DLocationlD: A (possibly empty) list of DL UIDs, which provides meta-information about the
link.

4. Using taxonomies and abstract models to evaluate Aristotle

Based on the OHS taxonomies and abstract hypermedia architectures, we may judge if a specific
systemis“open”,i.e, if it conformsto the“ openness’ criteriathat the taxonomy/ architecture poses.
A well-known taxonomy isthe Flag ([ 28], [29]) taxonomy for hypermedia systems. According to the
Flag taxonomy ahypermediasystemis“open” if it makesa clear decomposition of content-structure
and storage-run time behavior. Using the Flag visua representation of a system, we may accurately
di stingui sh between non-open systems (monalithic, like the HyperCard or with embedded links, like
the WWW) and open systems (link service, like Microcosm, and Hyperbases, like Devise). An example
of Flag-based system representations can be found in \h Figure 6.

—

Monolithic Embedded Links Link Service Hyperbase
HyperCard www Microcosm DHM

Figure 6: Examples of hypermedia system representations using the Flag taxonomy

According to Flag, the Aristotle architecture is a true OHS with Aristotle’s entities mapping to the
four corners of the Flag diagram (\h Figure 7). The open set of Aristotle clients mapsto the“ Viewer”
corner, the CIM to the “ Session Manager”, the HSM to the “Data Model Manager” and, finally, the
CAM to“ Storage Manager”. The gray-colored interfaces have al so been formally defined and aone-
to-one mapping exists. Specifically, the “Linking” interface corresponds to the “ gateway” -to-client
protocol, encoded in Sl Ss. The C2SOHP mapsto the* Presentation” interface and, finally, the* Storage”
interface matches the HSM-CAM service-Connector set of communication specifications.
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Figure 7: Aristotle's representation according to the Flag taxonomy
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Figure 8: Aristotle's representation according to CoReArc

The Common Reference Architecture (CoReArc) abstract architecture has been recently proposed
[30]. CoReArc is influenced by the DHM/Dexter, HyperDisco _ HOSS and extends Flag in the
sensethat new modules may be added and their interfaces be represented. Again, Aristotleisclassified
as open and may be mapped as\h Figure 8 shows. The crucial issue that CoReArc emphasizes, isto
ensure multiplicity in architectural elements and to unambiguously define their interfaces. Aristotle
achieves both objectives, by allowing multiple-entitiesto cooperatein “ Content” and “ Service” layer
through well-defined, XML -based protocols.

A final remark hasto be made, regarding the proposed Hypermedia DataModel and itsexpressiveness.
The OHSWG has proposed a basic hypermedia model [14] for OHS. The Aristotle data model not
only is expressively equivalent with OHSWG model but aso, in certain aspects, exhibits greater
flexibility and conceptual richness. To facilitate this comparison, a visual representation for the two
modelsis provided in\h Figure 9.
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Figure 9: Diagrammatic representation of the OHSWG Hypertext Data Model and the proposed
Hypermedia Data Model (Aristotle). The dashed line denotes a conditional existence of the
relationship that is a Datal_ocation instance may refer to a DataSource or another Datal_ocation but
not both.

Themain difference of the two approachesisthe modeling of data sources and datalocations (termed
CONTENTSPEC and LOCSPEC in OHSWG terminology). The OHSWG takes a quite different
approach, than Aristotle, and models CONTENTSPEC as part of a Node definition. This resultsto
the confusion of hyper- and media-specific notions and is accompanied by redundancy: for every
node that refers to the same data source all information required to locate and access multimedia
content needsto be re-entered. Apart from this redundancy effect and its consequences (e.g., need for
multiple updates), this modeling implies only atomic nodes, which isavery restrictive assumption to
face real-world problems.

The concept of LOCSPEC lies closely to that of the anchor and, in principle, aims to provide a
media-depended addressing mechanism for rendering the anchor. We believe that this approach it is
too restrictive for three reasons. Firstly, the same LOCSPEC has to be defined more than once if
many anchors have been defined over the same media-location. Secondly, no composites are supported
—the competitive advantage of Aristotle may be appreciated considering the various ways to define
a composite node (addRefer, addCopy and addPromote methods). Finally, transclusion and location
composition urges for the disassociation of the data location from any other object, i.e., the DLT
should not be “embedded” in another object type or be part of it.

5. Conclusions and future work

Before concluding, it isimportant to examine how Aristotle fulfillsthe posed requirementsfor OHS.
The scalability requirement isfully supported as storage limitations are treated externaly to Aristotle.
The provision for an open set of dataformatsis also afeature of the underlying model and, asit has
already been discussed, it istransparently ensured. The set of external (client) applications that may
participatein the architecture varies from special Aristotle clientsto third-party applications, butitis
clear that in the latter case areduction of the hypermedia functionality is the possible shortcoming.
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Regarding the openness of the underlying data model, we remark that even though the Hypermedia
Data Model isfixed, the Content classes are boundlessly extensible.

Itisdifficult to estimateif it isfeasible to build an open OHS in terms of the underlying data model.
Thisfurther complicates, asthetrade-off of building “smart”/ “thick” clients must be also considered.
Wide scale distribution, which isamajor objective of the proposed architecture, ishandled through a
specially devel oped notification schemethat the Router moduleimplements. Aristotle servers support
multiple concurrent users and guarantee database locking for the Hyperbase. When the actual data
are kept outside server’s jurisdiction, e.g., an HTML page that is under the control of an HTTPd,
inconsistenciesmay occur. In such acase, the Server employsadetection policy, based on timestamps
and file signatures. It is planned to investigate how heuristic techniques [31] might be employed to
improve this policy with correction capabilities. All changes that affect a hypergraph are handled
through C2SOHP notification messages, hence long-term inconsistencies are avoided.

Thedistribution of multimediacontent over the Internet, theintegration of various and heterogeneous
data sources and the integration of third-party applications in a homogeneous and typical style are
challengeswhere OHS have an unquestionabl e advantage over WWW. On the other hand, the WWW
has matured significantly and the development of web content has become extremely easy aswidely
accepted standards and commercia software shoresup for it. Thispaper presented an OHS architecture,
which fits nicely into the posed regquirements for OHS and retains compatibility with widely used
and upcoming standards like Internet communication protocols and XML. This architecture,
empowered by anovel hypermediadatamodel, also attemptsto bridge the gap between more theoretic
approaches and real-world implementations, which is considered to become an essential proving
factor for OHS.
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