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Abstract

Recently, some pattern matching algorithms allowing gaps were 
introduced in Crochemore et al. [Approximate string matching 
with gaps. Nordic Journal of Computing, 9(2002):54–65, 2002], 
where upper-bounded, strict-bounded and unbounded gaps were 
considered. In this paper we further extend these restrictions on the 
gaps to permit lower-bounded and (lower-upper)-bounded gaps 
that we simply refer to as (a,b)-bounded gaps. We give formal 
definitions for these problems as well as their respective 
algorithmic solutions. 
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1   Introduction

String matching is an important and extensively studied problem in 
computer science, mainly due to its direct applications to such diverse 
areas as text, image and signal processing, speech analysis and 
recognition, musical analysis, information retrieval, computational 
biology, etc. Formally the string matching problem consists in finding 
all occurrences of a given pattern in a text, over some alphabet S. This 
paper focuses in one special type of pattern matching that arise mainly in 
computational biology, namely, the pattern matching problem with 
gaps. The problem of pattern matching with gaps is defined as follows: 
Given a text x and a pattern y, find all occurrences of y in x such that y  = i

x  , ∀ i ∈ 1..m where m is the length of y. Note that y occurs at ij

position j  of x with a gap sequence G = (g , g , ..., g ) where g  = j  -  j  -  1 1 2 m- 1 i i+1 i

1 and j  < j  < ... < j  (see Fig. 1a for a pictorial illustration).1 2 m

In Crochemore et al. [1], algorithms for several versions of pattern 
matching with gaps were presented. They confined the gaps by certain 

1criterion such as, b-bounded  (upper bounded) gaps (see Fig 1b), strict 
bounded (rigid length) gaps, and unbounded gaps. In this paper we 
introduce further restrictions to the gaps. First by bringing in a lower 

bound restriction on the gaps, i.e., g  ≥ a, ∀ i (see Fig 1c). Then by i

combining the lower and upper bound, i.e.a≤ g  ≤b, ∀i (see Fig i

1d). And finally, by allowing different range restrictions for each 

individual gap, i.e., a ≤ g  ≤b , ∀ i (see Fig 1e). In this way, the i i i

flexibility of the input and the precision of the output are both 
greatly increased. In the following sections we will look at each 
of these new versions.
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Fig.1 . Different types of gaps: (a) an occurrence with gaps in 
general, (b) a b-bounded gap for b = 2, (c) an a-bounded gap for a = 

2, (d) an (a, b)-bounded gap for (a, b) = (2, 3) and (e) an (a, b)-
bounded gap for (a, b) = {(2, 3), (0, 0), (3, 3)}.i i

2 Basic Definitions

We will uniformly adopt the four letter alphabet S = {A, C, G, T}, DNA

each letter standing for the first letter of the chemical name of the 
nucleotide in the polymer's chain. Let X be a string drawn from S. We DNA

represent X as an array X[1..n] of n ≥ 0 symbols, where n = length(X) 
denotes the length of the string X. By X[i] we denote the ith symbol in 
X, for 1 ≤ i ≤ n. Likewise, by X[i..j] we denote the substring of X 
contained between the ith and the jth symbol of X. For any integer j ∈ 
1..n, we call X[1..j] a prefix of X.

Given a text T of length n and a pattern P of length m, an occurrence 
with b-bounded gaps of P in T is an increasing sequence of indices (i , 1

i , . . . , i ) such that (i) 1 ≤ i  and i  = i ≤ n and (ii) i +1 - i  ≤ b+1, for h = 2 m 1 m h h
i1, 2, . . . , m- 1. We write P ≪ �� T to mean that P has an occurrence b

with b-bounded gaps that terminates at position i in T. In the same 
way, an occurrence with a-bounded gaps of P in T is an increasing 
sequence of indices (i , i , . . . , i ) such that (i) 1 ≤ i  and i  = i ≤ n and 1 2 m 1 m

i(ii) i  -  i  ≥ a + 1, for h = 1, 2, . . . , m -  1. We write P ≪  T to mean that h+1 h a

P has an occurrence with a-bounded gaps that terminates at position i 
in T. Also, an occurrence with (a, b)-bounded gaps of P in T is an 
increasing sequence of indices (i , i , . . . , i ) such that (i) 1 ≤ i  and i  = i 1 2 m 1 m
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i≤ n and (ii) a +1 £ i  - i £b +1, for h = 1,2,... m-1. We write P ≪  T to h+1 h  a, b

mean that P has an occurrence with (a, b)-bounded gaps that 
terminates at position i in T. Finally, an occurrence with (a, b)-
bounded gaps of P in T is an increasing sequence of indices (i , i , . . . , 1 2

i ) such that (i) 1 ≤ i  and i  = i ≤ n and (ii) a +1 ≤ i  -  i  ≤ b +1, for h, i m 1 m i h+1 h i
i= 1, 2, . . . , m- 1. We write P ≪  T to mean that P has an occurrence a, b

with (a, b)-bounded gaps that terminates at position i in T.

Table 1. LastPos-table for T = AACGTTGACGCGATA and P = AGTA and b= 2.

3    Pattern Matching With b-bounded Gaps

The pattern matching problem with b-bounded gaps is formally defined 
as follows:

Problem 1 (upper bounded gaps). Given a text T of length n, a pattern P 
of length m and a positive integer b, the string pattern matching problem 

j with  b-bounded gaps is to find all positions  j in  T such that P ≪  T, for  b

1 ≤ j ≤ n.

Let Pref(P) be the set of nonempty prefices of P {p, p . . . p}where p = 1 2 m i

P[1..i]. For p∈ Pref(P), denote by L(p) the set of positions k in T such 

that p ≪   T, i.e., there is an occurrence of p with b-bounded gaps that 
terminates at position k in T. We compute the following table for each 

p∈ Pref(P): LastPos (p) = max{0 ≤ k ≤ j : (k ∈ L(p) and j -  k ≤a) or k = j i i
j 0 }. LastPos (p)= 0 means that pT, thus there are not occurrences of j i i       b 

p at or before position j in T. The computation of a new column LastPos  i j

is implemented by extending each of the previously occurring prefices 
by a single letter, or by leaving the last position of the last match 

junchanged otherwise. If LastPos (P) ? 0 for some j then P ≪  T. As an j b 

example, Table 1 shows the LastPos table for text T = AACGTTGA 
CGCGATA, pattern P = AGTA and b= 2.
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   LastPosj(?i)

   
1
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5

 
6

 
7

 
8

 
9 10 11 12 13 14 15

i

 
?????i

   
L(?i)

 
A

 
A

 
C

 
G

 
T

 
T

 
G

 
A

 
C G C G A T A

    1

  

A

  

1,2,8,13,15

 

1

 

2

 

2

 

2

 

0

 

0

 

0

 

8

 

8 8 0 0 13 13 15

2

  

AG

  

4,10

 

0

 

0

 

0

 

4

 

4

 

4

 

0

 

0

 

0 10 10 10 0 0 0

3 AGT 5,6 0 0 0 0 5 6 6 6 0 0 0 0 0 0 0

4 AGTA 8 0 0 0 0 0 0 0 8 8 8 0 0 0 0 0
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In Crochemore et al. [1], it was shown that Table 1 can be obtained by 

computing a matrix D[0..m, 0..n] with boundaries D[  , j] = 0; D[i,  ] = 
- 1; D[0, 0] = 0 and

This recursive formula is algorithmically described in Algorithm 1. The 
complexity of Algorithm 1 is easily seen to be O(nm)-time and -space. 
We can use the technique introduced in [2] to reduce the space 
complexity to O(n). Table 2a gives an example of Algorithm 1 applied 
to text T  = AACGTTGACGCGATA, pattern P = AGTA and b = 2. Note 1

8that P ≪  T  (see Fig. 1b for a better illustration of the occurrence).b1

Fig. 2. Algorithm 1. b-bounded gaps.

Fig. 3. Algorithm 2. a-bounded gaps.
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D[i, j] =

 {
  

j
 

, if T[j] = P[i] and D[i
 

-  1, j
 

-  1] > - 1 

  
D[i, j

 
-  1]

 
, if j

 
-  D[i, j

 
-  1] < ?

 
+ 1 and T[j] ?P[i] and D[i -  1, j -  1] ?- 1

- 1 , otherwise

Algorithm  1:  ?-bounded gaps  (lower bounded gaps)

Input: T, P, â, n = length(T), m = length(P)

01. for  j = 1  to  n do  D[0, j] = 0

 

02. for  i = 1  to  m

  

do  D[i, 0] = - 1; D[0, 0] = 0

  

03. for  j = 1  to  n do

  

04. for  i = 1  to  m

  

do

  

05. if   T [j] = P [i]  and  D[i

 

-  1, j

 

-  1] >  - 1  then  D[i, j] = j

 

06. elseif  j

 

-  D[i, j

 

-  1] <  â

 

+ 1  then  D[i, j] = D[i, j

 

-  1]

 

07. else

 
D[i, j] = - 1

  

08. for  j = 1  to  n do  if  D[m, j] = j
  

then  output j
 

Algorithm  2:  ?-bounded gaps  (upper bounded gaps)  
Input:

  
T, P, ?, n

 
= length(T), m

 
= length(P)

 
   01.

 

for  j

  

= 1  to  n

  

do  D[0, j] = 0

 02.

 

for  i

  

= 1  to  m

  

do  D[i, 0] = - 1; D[0, 0] = 0

  
03.

 

for  j

  

= 1  to  n

  

do

  
04.

  

if j

 

> ?

 

then j' = j

 

-  ?

 

-  1 else j' = 0

  

05.

  

for i

 

= 1 to m

 

do

 

06.

   

if T[j] = P[i] and D[i

 

-  1, j'] > - 1 then D[i, j] = j

07. else D[i, j] = D[i, j -  1]

08. for  j = 1  to  n do  if  D[m, j] = j then  output j
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4   Pattern Matching With a-bounded Gaps

The pattern matching problem with a-bounded gaps is formally defined 
as follows:

Problem 2 (lower bounded gaps). Given a text T of length n, a pattern 
P of length m and a positive integer a, the string pattern matching 
problem with a-bounded gaps is to find all positions j in T such that P 

j≪  T, for 1 ≤ j ≤ n.a

The main difference between a-bounded gaps and b-bounded gaps is 
that when a match is found at position (i, j), instead of checking 
LastPos (p- 1) we check LastPos (p- 1). If LastPos (p- 1) > 0 j- 1 i j- a- 1 i j- a- 1 i

and j > a then an occurrence is found at position (i, j). So, Problem 2 can 
be solved using Algorithm 1 with the following variations:

where j' = j -  a -  1 if j > a, 0 otherwise. A more detailed description of 
these modifications is shown in Algorithm 2. The complexity of 
Algorithm 2 is the same as that of Algorithm 1. i.e., O(nm). If text T  = 2

AGGTATCCGGATAGA, pattern P = AGTA and a= 2, for example, 
13then P ≪  T  (cf. Table 2b and Fig. 1c).a2

5   Pattern Matching With (a, b)-bounded Gaps

The pattern matching problem with (a, b)-bounded gaps is formally 
defined as follows:

Problem 3 (lower&upper bounded gaps). Given a text T of length n 

and a pattern P of length m and positive integers (a, b), the string 

pattern matching problem with (a, b)-bounded gaps is to find all 
jpositions j in T such that P ≪  T, for 1 ≤ j ≤ n.a, b

We see a solution to this problem in a combination of both Algorithm 1 

and Algorithm 2 as follows: Let D[  , j] = j; D[i,   ] = - 1; D[0, 0] = 0 and 
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D[i, j] = {  j , if T[j] = P[i] and D[i, j'i] > - 1 

D[i, j -  1] , otherwise
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where j' = j -  a -  1 if j >a, 0 otherwise. Algorithm 3 describes these 
modifications in more detail. Results from applying Algorithm 3 to text 
T  = GATGGATCAGTCACA, pattern P = AGTA and (a, b) = (2, 3) are 3

shown in Table 3a. Refer back to Fig. 1d to see an illustration of an 
occurrence ending at position 15 in T .3

Fig. 4. Algorithm 3. (a, b) -bounded gaps.

6   Pattern matching With (a, b)-bounded Gaps

The pattern matching problem with (a, b)-bounded gaps is formally 

defined as follows:

Problem 4 (flexible lower&upper bounded gaps). Given a text T of 
length n and a pattern P of length m and positive integers {(a, b)..(a, 1 1 m

b)}, the string pattern matching problem with (a, b)-bounded gaps is to m
jfind all positions j in T such that P ≪ T, for 1 ≤ j ≤ n.a, b

This problem differs from Problem 3 only in that individual symbols in 
the the pattern p  has different gap bounds (a, b). We propose to solve i i i

this problem by the following simple recursive formula: Let D[  , j] = j; 

D[i,   ] = - 1; D[0, 0] = 0 and
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D[i, j] =

 {
  

  
j

 , if T[j] = P[i] and D[i
 

-  1, j'i] > - 1 and j -  D[i -  1, j'] ≤ ?+ 1

  
D[i, j

 
-  1]

 
, if j

 
-  D[i, j

 
-  1] < ?

 
+ 1

 - 1 , otherwise

Algorithm  3:  (?????-bounded gaps  (lower&upper bounded gaps)

Input:

  
T, P, ?, ??

 
n

 
= length(T), m

 
= length(P)

 
  

01.

 

for  j

  

= 1  to  n

  

do  D[0, j] = 0

 
02.

 

for  i

  

= 1  to  m

  

do  D[i, 0] = - 1; D[0, 0] = 0

  
03.

 

for  j

  

= 1  to  n

  

do

  

04.

  

if j

 

> ?

 

then j' = j

 

-  ?

 

-  1 else j' = 0

  

05.

  

for i

 

= 1 to m

 

do

 

06.

   

T[j] = P[i] and D[i

 

-  1, j']

 

> - 1 and j

 

-  D[i -  1, j'] ??+ 1 then

07. D[i, j] = j

08. else D[i, j] = - 1

09. for  j = 1  to  n do  if  D[m, j] = j then  output j
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where j' = j -  a -  1 if j > a, 0 otherwise. The time complexity of this i i

algorithm is the same as the previous algorithms. Table 3b gives an 
example for text T  = GATGGATCAGTCACA, pattern P = AGTA and 4

(a, b) = {(2, 3), (0, 0), (3, 3)}. Notice that there is an occurrence ending i i

at position 15 in T . This occurrence is also graphically illustrated in 4

Fig. 1e.

Fig. 5. Algorithm 4. (a,b)-bounded gaps.

7 Conclusions

New versions of pattern matching with gaps were proposed and their 
efficient algorithmic solutions were presented. The solutions were 
based on existing algorithms described in [1] but many necessary 
alterations were made. It was shown that all these algorithms have an 
O(nm)-time and -space complexity. After introducing these new 
versions more flexible and precise string matching algorithms with 
gaps can be achieved.
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j
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Table 2. Example of the computation of (a) a b-bounded table for pattern P = 
AGTAC, text T  = AACGTTGACGCGATA and b = 2 using Algorithm 1, 1

(b) an a-bounded table for pattern P = AGTAC, text T  = 2

CAGCTAGTATACACG and a = 2 using Algorithm 2.

Table 3. Example of the computation of (a) an (a, b)-bounded table for pattern P 
= AGTAC, text T  = AGGTATCCGGATAGA and (a, b) = (2, 3) using 3
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  0  1  2  3  4  5  6  7  8  9  10 11 12 13 14 15

  
T1

 
A

 
A

 
C

 
G

 
T

 
T

 
G

 
A

 
C

 
G C G A T A

0

 
P

 
0

 
0

 
0

 
0

 
0

 
0

 
0

 
0

 
0

 
0

 
0 0 0 0 0 0

1

 

A

 

-1

 

1

 

2

 

2

 

2

 

-1

 

-1

 

|-1

 

8

 

8

 

8 -1 -1 13 13 15
2

 

G

 

-1

 

-1

 

-1

 

-1

 

4

 

4

 

4

 

-1

 

-1

 

-1

 

10 10 10 -1 -1 -1
3

 

T

 

-1

 

-1

 

-1

 

-1

 

-1

 

5

 

6

 

6

 

6

 

-1

 

-1 -1 -1 -1 -1 -1
4

 

A

 

-1

 

-1

 

-1

 

-1

 

-1

 

-1

 

-1

 

-1

 

8

 

8

 

8 -1 -1 -1 -1 -1

            

         

(a)

   

            
  

0

 

1

 

2

 

3

 

4

 

5

 

6

 

7

 

8

 

9

 

10 11 12 13 14 15

  

T2

 

C

 

A

 

G

 

C

 

T

 

A

 

G

 

T

 

A

 

T A C A C G
0 P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 A -1 -1 2 2 2 2 6 6 6 9 9 11 11 13 13 13
2 G -1 -1 -1 -1 -1 -1 -1 7 7 7 7 7 7 7 7 15
3 T -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 10 10 10 10 10 10
4 A -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 13 13 13

(b)

  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15

  
T3

 
A

 
G

 
G

 
T

 
A

 
T

 
C

 
C

 
G G A T A G A

0

 
P

 
0

 
1

 
2

 
3

 
4

 
5

 
6

 
7

 
8

 
9 10 11 12 13 14 15

1

 

A

 

-1

 

1

 

1

 

1

 

1

 

5

 

5

 

5

 

5

 

-1 -1 11 11 13 13 15
2

 

G

 

-1

 

-1

 

-1

 

-1

 

-1

 

-1

 

-1

 

-1

 

-1

 

9 9 9 9 -1 14 14
3

 

T

 

-1

 

-1

 

-1

 

-1

 

-1

 

-1

 

-1

 

-1

 

-1

 

-1 -1 -1 12 12 12 12
4

 

A

 

-1

 

-1

 

-1

 

-1

 

-1

 

-1

 

-1

 

-1

 

-1

 

-1 -1 -1 -1 -1 -1 15

            

         

(a)

   

            
  

0

 

1

 

2

 

3

 

4

 

5

 

6

 

7

 

8

 

9 10 11 12 13 14 15

  

T4

 

G

 

A

 

T

 

G

 

G

 

A

 

T

 

C

 

A G T C A C A
0 P 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 A -1 -1 2 2 2 2 6 6 6 9 9 9 9 13 13 15
2 G -1 -1 -1 -1 -1 5 5 5 5 5 10 10 10 10 10 10
3 T -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 11 11 11 11 11
4 A -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 15

(b)

Yoan Pinzon y Shu Wang



Algorithm 3, and (b) an (a, b)-bounded table for pattern P = AGTAC, 
text T  = GATGGATCAGTCACA and (a, b) = {(2, 3), (0, 0), (3, 3)}using 4 i i

8 13 15 15Algorithm 4. We conclude that P ≪  T , P ≪  T , P ≪ T  and P ≪ T .b1 a2 a, b 3 a, b4
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