
Pattern-Matching with Bounded Gaps in
Genomic Sequences

Yoan Pinzon†, Shu Wang*
Fecha de Recibido: 07/11/2008 Fecha de Aprobación: 20/04/2009

Abstract

Recently, some pattern matching algorithms allowing gaps were
introduced in Crochemore et al. [Approximate string matching
with gaps. Nordic Journal of Computing, 9(2002):54–65, 2002],
where upper-bounded, strict-bounded and unbounded gaps were
considered. In this paper we further extend these restrictions on the
gaps to permit lower-bounded and (lower-upper)-bounded gaps
that we simply refer to as (a,b)-bounded gaps. We give formal
definitions for these problems as well as their respective
algorithmic solutions.

Keywords: string pattern matching, gaps, genomic sequences.

REVISTA COLOMBIANA DE COMPUTACIÓN
Volumen 10, número 1
Págs. 110- 119

† Grupo de Investigación en Algoritmos y Combinatoria (ALGOS-UN), Universidad
Nacional de Colombia, Bogotá, Colombia, ypinzon@unal.edu.co
* Department of Computing & Software, McMaster University, Canada,
shuw@mcmaster.ca

1 Here we denote by a a lower bound and by b an upper bound.
‡ Se concede autorización para copiar gratuitamente parte o todo el material publicado en
la Revista Colombiana de Computación siempre y cuando las copias no sean usadas para
fines comerciales, y que se especifique que la copia se realiza con el consentimiento de la
Revista Colombiana de Computación.

1 Introduction

String matching is an important and extensively studied problem in
computer science, mainly due to its direct applications to such diverse
areas as text, image and signal processing, speech analysis and
recognition, musical analysis, information retrieval, computational
biology, etc. Formally the string matching problem consists in finding
all occurrences of a given pattern in a text, over some alphabet S. This
paper focuses in one special type of pattern matching that arise mainly in
computational biology, namely, the pattern matching problem with
gaps. The problem of pattern matching with gaps is defined as follows:
Given a text x and a pattern y, find all occurrences of y in x such that y = i

x , ∀ i ∈ 1..m where m is the length of y. Note that y occurs at ij

position j of x with a gap sequence G = (g , g , ..., g) where g = j - j - 1 1 2 m- 1 i i+1 i

1 and j < j < ... < j (see Fig. 1a for a pictorial illustration).1 2 m

In Crochemore et al. [1], algorithms for several versions of pattern
matching with gaps were presented. They confined the gaps by certain

1criterion such as, b-bounded (upper bounded) gaps (see Fig 1b), strict
bounded (rigid length) gaps, and unbounded gaps. In this paper we
introduce further restrictions to the gaps. First by bringing in a lower

bound restriction on the gaps, i.e., g ≥ a, ∀ i (see Fig 1c). Then by i

combining the lower and upper bound, i.e.a≤ g ≤b, ∀i (see Fig i

1d). And finally, by allowing different range restrictions for each

individual gap, i.e., a ≤ g ≤b , ∀ i (see Fig 1e). In this way, the i i i

flexibility of the input and the precision of the output are both
greatly increased. In the following sections we will look at each
of these new versions.

111
Pattern-Matching with Bounded Gaps in Genomic Sequences

Fig.1 . Different types of gaps: (a) an occurrence with gaps in
general, (b) a b-bounded gap for b = 2, (c) an a-bounded gap for a =

2, (d) an (a, b)-bounded gap for (a, b) = (2, 3) and (e) an (a, b)-
bounded gap for (a, b) = {(2, 3), (0, 0), (3, 3)}.i i

2 Basic Definitions

We will uniformly adopt the four letter alphabet S = {A, C, G, T}, DNA

each letter standing for the first letter of the chemical name of the
nucleotide in the polymer's chain. Let X be a string drawn from S. We DNA

represent X as an array X[1..n] of n ≥ 0 symbols, where n = length(X)
denotes the length of the string X. By X[i] we denote the ith symbol in
X, for 1 ≤ i ≤ n. Likewise, by X[i..j] we denote the substring of X
contained between the ith and the jth symbol of X. For any integer j ∈
1..n, we call X[1..j] a prefix of X.

Given a text T of length n and a pattern P of length m, an occurrence
with b-bounded gaps of P in T is an increasing sequence of indices (i , 1

i , . . . , i) such that (i) 1 ≤ i and i = i ≤ n and (ii) i +1 - i ≤ b+1, for h = 2 m 1 m h h
i1, 2, . . . , m- 1. We write P ≪ �� T to mean that P has an occurrence b

with b-bounded gaps that terminates at position i in T. In the same
way, an occurrence with a-bounded gaps of P in T is an increasing
sequence of indices (i , i , . . . , i) such that (i) 1 ≤ i and i = i ≤ n and 1 2 m 1 m

i(ii) i - i ≥ a + 1, for h = 1, 2, . . . , m - 1. We write P ≪ T to mean that h+1 h a

P has an occurrence with a-bounded gaps that terminates at position i
in T. Also, an occurrence with (a, b)-bounded gaps of P in T is an
increasing sequence of indices (i , i , . . . , i) such that (i) 1 ≤ i and i = i 1 2 m 1 m

112
Yoan Pinzon y Shu Wang

i≤ n and (ii) a +1 £ i - i £b +1, for h = 1,2,... m-1. We write P ≪ T to h+1 h a, b

mean that P has an occurrence with (a, b)-bounded gaps that
terminates at position i in T. Finally, an occurrence with (a, b)-
bounded gaps of P in T is an increasing sequence of indices (i , i , . . . , 1 2

i) such that (i) 1 ≤ i and i = i ≤ n and (ii) a +1 ≤ i - i ≤ b +1, for h, i m 1 m i h+1 h i
i= 1, 2, . . . , m- 1. We write P ≪ T to mean that P has an occurrence a, b

with (a, b)-bounded gaps that terminates at position i in T.

Table 1. LastPos-table for T = AACGTTGACGCGATA and P = AGTA and b= 2.

3 Pattern Matching With b-bounded Gaps

The pattern matching problem with b-bounded gaps is formally defined
as follows:

Problem 1 (upper bounded gaps). Given a text T of length n, a pattern P
of length m and a positive integer b, the string pattern matching problem

j with b-bounded gaps is to find all positions j in T such that P ≪ T, for b

1 ≤ j ≤ n.

Let Pref(P) be the set of nonempty prefices of P {p, p . . . p}where p = 1 2 m i

P[1..i]. For p∈ Pref(P), denote by L(p) the set of positions k in T such

that p ≪ T, i.e., there is an occurrence of p with b-bounded gaps that
terminates at position k in T. We compute the following table for each

p∈ Pref(P): LastPos (p) = max{0 ≤ k ≤ j : (k ∈ L(p) and j - k ≤a) or k = j i i
j 0 }. LastPos (p)= 0 means that pT, thus there are not occurrences of j i i b

p at or before position j in T. The computation of a new column LastPos i j

is implemented by extending each of the previously occurring prefices
by a single letter, or by leaving the last position of the last match

junchanged otherwise. If LastPos (P) ? 0 for some j then P ≪ T. As an j b

example, Table 1 shows the LastPos table for text T = AACGTTGA
CGCGATA, pattern P = AGTA and b= 2.

113

 LastPosj(?i)

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15

i

?????i

L(?i)

A

A

C

G

T

T

G

A

C G C G A T A

 1

A

1,2,8,13,15

1

2

2

2

0

0

0

8

8 8 0 0 13 13 15

2

AG

4,10

0

0

0

4

4

4

0

0

0 10 10 10 0 0 0

3 AGT 5,6 0 0 0 0 5 6 6 6 0 0 0 0 0 0 0

4 AGTA 8 0 0 0 0 0 0 0 8 8 8 0 0 0 0 0

Pattern-Matching with Bounded Gaps in Genomic Sequences

In Crochemore et al. [1], it was shown that Table 1 can be obtained by

computing a matrix D[0..m, 0..n] with boundaries D[, j] = 0; D[i,] =
- 1; D[0, 0] = 0 and

This recursive formula is algorithmically described in Algorithm 1. The
complexity of Algorithm 1 is easily seen to be O(nm)-time and -space.
We can use the technique introduced in [2] to reduce the space
complexity to O(n). Table 2a gives an example of Algorithm 1 applied
to text T = AACGTTGACGCGATA, pattern P = AGTA and b = 2. Note 1

8that P ≪ T (see Fig. 1b for a better illustration of the occurrence).b1

Fig. 2. Algorithm 1. b-bounded gaps.

Fig. 3. Algorithm 2. a-bounded gaps.

114

D[i, j] =

 {

j

, if T[j] = P[i] and D[i

- 1, j

- 1] > - 1

D[i, j

- 1]

, if j

- D[i, j

- 1] < ?

+ 1 and T[j] ?P[i] and D[i - 1, j - 1] ?- 1

- 1 , otherwise

Algorithm 1: ?-bounded gaps (lower bounded gaps)

Input: T, P, â, n = length(T), m = length(P)

01. for j = 1 to n do D[0, j] = 0

02. for i = 1 to m

do D[i, 0] = - 1; D[0, 0] = 0

03. for j = 1 to n do

04. for i = 1 to m

do

05. if T [j] = P [i] and D[i

- 1, j

- 1] > - 1 then D[i, j] = j

06. elseif j

- D[i, j

- 1] < â

+ 1 then D[i, j] = D[i, j

- 1]

07. else

D[i, j] = - 1

08. for j = 1 to n do if D[m, j] = j

then output j

Algorithm 2: ?-bounded gaps (upper bounded gaps)
Input:

T, P, ?, n

= length(T), m

= length(P)

 01.

for j

= 1 to n

do D[0, j] = 0

 02.

for i

= 1 to m

do D[i, 0] = - 1; D[0, 0] = 0

03.

for j

= 1 to n

do

04.

if j

> ?

then j' = j

- ?

- 1 else j' = 0

05.

for i

= 1 to m

do

06.

if T[j] = P[i] and D[i

- 1, j'] > - 1 then D[i, j] = j

07. else D[i, j] = D[i, j - 1]

08. for j = 1 to n do if D[m, j] = j then output j

Yoan Pinzon y Shu Wang

4 Pattern Matching With a-bounded Gaps

The pattern matching problem with a-bounded gaps is formally defined
as follows:

Problem 2 (lower bounded gaps). Given a text T of length n, a pattern
P of length m and a positive integer a, the string pattern matching
problem with a-bounded gaps is to find all positions j in T such that P

j≪ T, for 1 ≤ j ≤ n.a

The main difference between a-bounded gaps and b-bounded gaps is
that when a match is found at position (i, j), instead of checking
LastPos (p- 1) we check LastPos (p- 1). If LastPos (p- 1) > 0 j- 1 i j- a- 1 i j- a- 1 i

and j > a then an occurrence is found at position (i, j). So, Problem 2 can
be solved using Algorithm 1 with the following variations:

where j' = j - a - 1 if j > a, 0 otherwise. A more detailed description of
these modifications is shown in Algorithm 2. The complexity of
Algorithm 2 is the same as that of Algorithm 1. i.e., O(nm). If text T = 2

AGGTATCCGGATAGA, pattern P = AGTA and a= 2, for example,
13then P ≪ T (cf. Table 2b and Fig. 1c).a2

5 Pattern Matching With (a, b)-bounded Gaps

The pattern matching problem with (a, b)-bounded gaps is formally
defined as follows:

Problem 3 (lower&upper bounded gaps). Given a text T of length n

and a pattern P of length m and positive integers (a, b), the string

pattern matching problem with (a, b)-bounded gaps is to find all
jpositions j in T such that P ≪ T, for 1 ≤ j ≤ n.a, b

We see a solution to this problem in a combination of both Algorithm 1

and Algorithm 2 as follows: Let D[, j] = j; D[i,] = - 1; D[0, 0] = 0 and

115

D[i, j] = { j , if T[j] = P[i] and D[i, j'i] > - 1

D[i, j - 1] , otherwise

Pattern-Matching with Bounded Gaps in Genomic Sequences

where j' = j - a - 1 if j >a, 0 otherwise. Algorithm 3 describes these
modifications in more detail. Results from applying Algorithm 3 to text
T = GATGGATCAGTCACA, pattern P = AGTA and (a, b) = (2, 3) are 3

shown in Table 3a. Refer back to Fig. 1d to see an illustration of an
occurrence ending at position 15 in T .3

Fig. 4. Algorithm 3. (a, b) -bounded gaps.

6 Pattern matching With (a, b)-bounded Gaps

The pattern matching problem with (a, b)-bounded gaps is formally

defined as follows:

Problem 4 (flexible lower&upper bounded gaps). Given a text T of
length n and a pattern P of length m and positive integers {(a, b)..(a, 1 1 m

b)}, the string pattern matching problem with (a, b)-bounded gaps is to m
jfind all positions j in T such that P ≪ T, for 1 ≤ j ≤ n.a, b

This problem differs from Problem 3 only in that individual symbols in
the the pattern p has different gap bounds (a, b). We propose to solve i i i

this problem by the following simple recursive formula: Let D[, j] = j;

D[i,] = - 1; D[0, 0] = 0 and

116

D[i, j] =

 {

j

 , if T[j] = P[i] and D[i

- 1, j'i] > - 1 and j - D[i - 1, j'] ≤ ?+ 1

D[i, j

- 1]

, if j

- D[i, j

- 1] < ?

+ 1

 - 1 , otherwise

Algorithm 3: (?????-bounded gaps (lower&upper bounded gaps)

Input:

T, P, ?, ??

n

= length(T), m

= length(P)

01.

for j

= 1 to n

do D[0, j] = 0

02.

for i

= 1 to m

do D[i, 0] = - 1; D[0, 0] = 0

03.

for j

= 1 to n

do

04.

if j

> ?

then j' = j

- ?

- 1 else j' = 0

05.

for i

= 1 to m

do

06.

T[j] = P[i] and D[i

- 1, j']

> - 1 and j

- D[i - 1, j'] ??+ 1 then

07. D[i, j] = j

08. else D[i, j] = - 1

09. for j = 1 to n do if D[m, j] = j then output j

Yoan Pinzon y Shu Wang

where j' = j - a - 1 if j > a, 0 otherwise. The time complexity of this i i

algorithm is the same as the previous algorithms. Table 3b gives an
example for text T = GATGGATCAGTCACA, pattern P = AGTA and 4

(a, b) = {(2, 3), (0, 0), (3, 3)}. Notice that there is an occurrence ending i i

at position 15 in T . This occurrence is also graphically illustrated in 4

Fig. 1e.

Fig. 5. Algorithm 4. (a,b)-bounded gaps.

7 Conclusions

New versions of pattern matching with gaps were proposed and their
efficient algorithmic solutions were presented. The solutions were
based on existing algorithms described in [1] but many necessary
alterations were made. It was shown that all these algorithms have an
O(nm)-time and -space complexity. After introducing these new
versions more flexible and precise string matching algorithms with
gaps can be achieved.

References

[1] M. Crochemore, C.S. Iliopoulos, C. Makris,W. Rytter, A.
Tsakalidis, and K. Tsichlas. Approximate string matching with
gaps. Nordic Journal of Computing, 9(2002):54–65, 2002.

117

D[i, j] =

 {

j

, if T[j] = P[i] and D[i

- 1, j'i] > - 1 and j - D[i - 1, j'i] ≤ ?i + 1

D[i, j

- 1]

, if j

- D[i, j

- 1] < ?i

+ 1

 - 1 , otherwise

Algorithm 4: (??, ??)-bounded gaps (flexible lower&upper bounded gaps)

Input: T, P, ?????m, ?????m? n = length(T), m = length(P)

01.

for j

= 1 to n

do D[0, j] = j

 02.

for i

= 1 to m

do D[i, 0] = - 1; D[0, 0] = 0

 03.

for j

= 1 to n

do

04.

if j

> ?i

then j' = j

- ?i

- 1 else j' = 0

05.

for i

= 1 to m

do

06.

T[j] = P[i] and D[i

- 1, j'] > - 1 and j

- D[i - 1, j'] ??i + 1 then

07. D[i, j] = j

08. else D[i, j] = - 1

09. for j = 1 to n do if D[m, j] = j then output j

Pattern-Matching with Bounded Gaps in Genomic Sequences

[2] D. S. Hirschberg. A linear space algorithm for computing maximal
common subsequences. Communication of ACM, 18(6):341–343,
1975.

Table 2. Example of the computation of (a) a b-bounded table for pattern P =
AGTAC, text T = AACGTTGACGCGATA and b = 2 using Algorithm 1, 1

(b) an a-bounded table for pattern P = AGTAC, text T = 2

CAGCTAGTATACACG and a = 2 using Algorithm 2.

Table 3. Example of the computation of (a) an (a, b)-bounded table for pattern P
= AGTAC, text T = AGGTATCCGGATAGA and (a, b) = (2, 3) using 3

118

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T1

A

A

C

G

T

T

G

A

C

G C G A T A

0

P

0

0

0

0

0

0

0

0

0

0

0 0 0 0 0 0

1

A

-1

1

2

2

2

-1

-1

|-1

8

8

8 -1 -1 13 13 15
2

G

-1

-1

-1

-1

4

4

4

-1

-1

-1

10 10 10 -1 -1 -1
3

T

-1

-1

-1

-1

-1

5

6

6

6

-1

-1 -1 -1 -1 -1 -1
4

A

-1

-1

-1

-1

-1

-1

-1

-1

8

8

8 -1 -1 -1 -1 -1

(a)

0

1

2

3

4

5

6

7

8

9

10 11 12 13 14 15

T2

C

A

G

C

T

A

G

T

A

T A C A C G
0 P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 A -1 -1 2 2 2 2 6 6 6 9 9 11 11 13 13 13
2 G -1 -1 -1 -1 -1 -1 -1 7 7 7 7 7 7 7 7 15
3 T -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 10 10 10 10 10 10
4 A -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 13 13 13

(b)

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T3

A

G

G

T

A

T

C

C

G G A T A G A

0

P

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15

1

A

-1

1

1

1

1

5

5

5

5

-1 -1 11 11 13 13 15
2

G

-1

-1

-1

-1

-1

-1

-1

-1

-1

9 9 9 9 -1 14 14
3

T

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1 -1 -1 12 12 12 12
4

A

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1 -1 -1 -1 -1 -1 15

(a)

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14 15

T4

G

A

T

G

G

A

T

C

A G T C A C A
0 P 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 A -1 -1 2 2 2 2 6 6 6 9 9 9 9 13 13 15
2 G -1 -1 -1 -1 -1 5 5 5 5 5 10 10 10 10 10 10
3 T -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 11 11 11 11 11
4 A -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 15

(b)

Yoan Pinzon y Shu Wang

Algorithm 3, and (b) an (a, b)-bounded table for pattern P = AGTAC,
text T = GATGGATCAGTCACA and (a, b) = {(2, 3), (0, 0), (3, 3)}using 4 i i

8 13 15 15Algorithm 4. We conclude that P ≪ T , P ≪ T , P ≪ T and P ≪ T .b1 a2 a, b 3 a, b4

119
Pattern-Matching with Bounded Gaps in Genomic Sequences

