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Abstract

Three nonlinear partial differential equations, namely, the standard KdV
equation, the Boussinesq equation and the generalized fifth-order KdV
equation are considered here from of point the view of construct exact
solutions for them. The equations that we consider here are in its most general
form. New exact solutions which include periodic and soliton solutions are
formally derived by using the tanh method. The programming language
Mathematica is used.
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1 Introduction

A great variety of physical, chemical and biological phenomena are
governed by nonlinear partial differential equations, and the
knowledge of closed form solutions for its is the great importance for
many researches for several reasons: facilitates the testing of numerical
solvers, help to physicists to better understand the mechanism that
govern the physics models, provide knowledge to the physical
problem, provide possible applications and aids to mathematicians in
the stability analysis of solutions. It is well known that KAV equation

u +auu_+pPu_. =0,
is one of the most important physic models which has been studied by
many researches in the last decades. In the same way, the Boussinesq
equation
2 —
utt+auxx+ﬁ(u )xx+yu _O'
is considered as another important model as well the KdV. The two

models are formed by completely integrable equations and therefore its
posses an infinite number of conservations laws, so that give rise to

XXXX

N -soliton solutions for finite N, where N =1. The generalized
fifth-order KdV (fKdV) equation [1][2][3][4][5][6]
u o, +auu, +Puu +yuu, =0,

is a model which is integrable only in a few cases (see Sec. 5 ). A
variety of direct and computational methods have been used to obtain
exact solutions. Two of the most important direct methods are the
Hirota method [7], and the inverse scattering method [8]. Some of the
computational methods are the tanh method [9], generalized tanh
method [10][11][12][13], tanh-coth method [1], generalized tanh-coth
method [2][14][15][16][17], improved tanh-coth method [18], The
Cole-Hopf transformation [19], Exp-function method [20][21],
projective Riccati equations method [22], and the generalized
projective Riccati equations method [23][24][25][26].

XXXXX

The principal objective of this paper is to obtain exact solutions for the
KdV equation which include two arbitrary parameters, exact solutions
for the Boussinesq equation with three arbitrary parameters and exact
solutions for the generalized fKdV equations with four arbitrary
parameters, by using the generalized tanh method [10][11][12][13].
This paper is organized as follows: In Sec. 2, we will be reviewed
briefly of the generalized tanh method; In Sec. 3, we consider the KdV
equation and we obtain exact solutions for it by using the method
described in Sec. 2.; In Sec.4, we obtain exact solutions for the
Boussinesq equation with three arbitrary parameters; In Sec.5, exact
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solutions for the fKdV in the most general form are obtained. Finally,
some conclusions are given.

2  The tanh method

The wave transformation
u(x,t) =v($)

Foxt i @.1)

converts a PDE
G, x,u u,u, u u._,.)=0 (2.2)

X272 T X

to an ODE

H(£,v($),v'(£),v"(£),...) = 0. (2.3)
The tanh method use as solution to (2.3) the expansion
W& =a,+) ag (&), (24)
i=l

where

p(&)=k+@ (&), (2.5)

and k is a parameter to be determined later. It is well known that the
Riccati equation (2.5) has solutions given by

o If k<0 : &)=~k tanh(v=k &) and @ &) =—/-k coth(ﬁf).
« Ifk=0:@&)=-1¢
o Ifk>0: &)=k tan(Vk &) and (&) =k cot(vk &).

Substituting (2.4), along with (2.5) into (2.3) and collecting all terms
with the same power in @A), we get a polynomial in the variable

@=@ &) . The parameter m can be found by balancing the high-
order linear term with the nonlinear terms in (2.3). Equating the
coefficients of every power of @ to zero, we obtain an algebraic

system in the variables &, a,, a,,.., a,.. Solving the previous

system, we obtain the values for &, a,, a,,.., a,.. Lastly, we found

solutions to (2.2) in the original variables.
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3 The KdV equation

The Korteweg-de Vries (KdV) equation is a nonlinear partial
differential equation which has been derived in 1895 by the professor
Diederik Johaness Koteweg (1848-1941) and its student Gustav De-
Vries (1899-1934) with the aim to described a phenomenon observed
by the naval engineering John Scott Russel (1808-1882) fifty years
ago. More exactly, this phenomenon observed by Russel took place on
the Union canal near to Edinburgh on 1834 and was called by Russel
as the great wave of translation. In order to study and give an
explication about of this observed phenomenon, Russell did several
and extensive experiments in tanks of water, however this was a
difficult task. Others researches as Airy, Stokes, Boussinesq and
Rayleigh were done in a way independent, investigations of solitary
waves with the aim to understand in a better way the structure of the
great wave of translation observed by Rusell [27]. However , it was
not until 1895 when Korteweg and De-Vries derived the following
nonlinear equation (called Korteweg de-Vries equation (KdV)) which
give a description about the propagation of waves of water with small

amplitud
on 3\/§a 1, 2 1 _dn
L= | = +—an+—o0 3.6
or 2 hd([z” 39773 07> (36)
1 Th
o=k -—, 3.7
Y (3.7

here /] give the elevation of wave on surface of water, g is the
gravity acceleration, 7' and O are constants associated to model, the

independent variables 7 and { are associate with time and space
variables. Using the transformations

=L |8, v=_oc u:1/7+1a., (3.8)
g 2 3

the equation (3.6) is transformed into equation
u, +6uu, +u, =0, (3.9)

where subscripts denote partial derivatives.  More details and
applications on the KdV equation can be found in [28]
[29][30][31][32]1[33][341[35][36] and [37].
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We now give exact solutions for a more general than (3.9) equation
u, +ouu_+ Pu, =0. (3.10)

In this case Eq. (2.3) takes the form

AV () +av(EWV (&) + 7 (§) =0. (3.11)

Substituting (2.4) into (3.11) we get an equation whose left hand side
is a polynomial in the variable @=@(§) :

aqu’”” +b¢”+3 +...=0
In this equation the highest order term of v (&)W(&) is ag™"

while the highest order term of V(&) is b@"* . Balancing these

terms we obtain 2m+1=m+3 and then m =2 . Thus, we seck
solutions of (3.11) in the form

V(E):ao+a1ﬂf)+az¢z(£)a =x+At.
Using the metanh program (see Apendix) with the instruction
metanh[Oc# + a*x# Ox# + B*Ox, x,x# &, X+ A t, {ag, a1, az, k, A}, 2]

we get following solutions :

a) k=0, A=-aq,> aq, =0, a, =—%,

u,(x,t) =a, —iz.

a(x-aayg)

b) A =—8k,3—0'a0,a1 =0,a, =—1£,
uy(x,0) = a, + (\/_(X (8kB+aay)t )
u,(x,t) =a, + h? (v/=k (x —(8kB+aa,)t )
u,(x,t)=a, —12k’8tan2(x/z(x 8k,8+a'a0)t))
ug(x,t)=a, - cotz(f(x 8k,8+a’a0)t))
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4 Exact solutions to the Boussinesq equation

The Boussinesq equation
u, +au _+pPw’), +yu_. =0. (4.12)

was proposed by Boussinesq for a model of nonlinear dispersive
waves. In recent years, a lot of research work on Boussinesq equation
has been invested. For example, its solitary wave solutions, shock
wave solutions, periodic and other types of solutions were found in
Refs. [38],[39],[40], and the relations between a nonlinear lattice, the
Boussinesq equation and the KdV equation are studied in [41]. In this
case, the Eq. (2.3) takes the form

VIO +av'(§)+ B(20'(E) +20EN )+,

Substituting (2.4) into (4.12) we get an equation whose left hand side
is a polynomial in the variable @ = @(&) :

a¢2m+2 +b¢m+4 +... :0.
In this equation the highest order term of V(&)u"(&) is a@™™*

while the highest order term of V(&) is b@™** . Balancing these

terms we obtain 2m+2 =m+4 and then m =2 . Thus, we seek
solutions of (4.13) using the expansion

V(f):a0+a1¢(5)+az¢2(f)’ E:X‘F/‘t.
Using the metanh program (see Apendix) with the instruction

metanh[at,t#+a6x,x#+/3*6x,x#2 + ¥ *0x,x,x,xH & X+AL,
{aOI ai, azs k, A}, 2]

we get following solutions :
a) k:()’a():_/]z_a’al:())az:_é_ﬁyﬂ

2B
ul(x,t):—/]z-'-a- 6y .
2B B(x+tA)

2
u,(x,1) :—A +§;8ky+6;ytanh2 (\/—_k(x+t/1)).
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2
u () = =2 +;’;8ky+ 6Zycoth2 (Vk e+ ).

A’ +a+8ky 6ky
2B B

us(x,t)=—/12 +gg$ky_62ycotz (\/Z(X"'tﬂ)).

5 The general fifth-order KdV equation and its
exact solutions

u,(x,0)=—

tan’ («/E(x +t)|)).

The nonlinear generalized KdV equation of fifth order (fKdV
equation) reads

u +ou, +auu  +Puu_+yu =0, (5.19)

XXXXX

where @, [, ¥V and @ are arbitrary and real parameters with

Y #0. This equation describes motions of long waves in shallow

water under gravity and in a one-dimensional nonlinear lattice and it is
an important mathematical model with wide applications in quantum
mechanics and nonlinear optics. The authors in [8] implemented the
inverse scattering transform method to handle the nonlinear equations
of physical significance where soliton solutions and rational solutions
were developed. Some important particular cases of the Eq. (5.14) are
determined as follows [1][2][3]:

* Kaup-Kupershmidt equation (KK equation)

u +u, +10uu, +25uu  +20u’u, =0. (5.15)
* Sawada-Kotera equation (SK equation)
u +u, +Suu +Suu +5uu, =0. (5.16)
e Caudrey-Dodd-Gibbon equation
u, +u,  +30uu +30uu_ +180u’u, =0. (5.17)

e Lax equation
u +u, . +10uu  +20uu_ +30u’u, =0. (5.18)
» Ito equation
u *u, . +3uu +6uu +2u’u =0. (5.19)
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As the constants @, 8 and ) change, the properties of the equation

(5.14) drastically change. For instance, the Lax equation with @ =10,
[ =20, and y=30, and the SK equation where @ = =)y =5,
are completely integrable. These two equations have N -soliton
solutions and an infinite set of conserved laws. Another example is the
KK equation with @ =10, =25, and )y =20, which is known to
be integrable, and has bilinear representations, but for which the
explicit form of the N -soliton solutions is not known. A fourth
equation in this class is the Ito equation, with @ =3, =6, and

¥ =2, which is not completely integrable, but has a limited number

of special conserved laws. Exact solutions for the previous particular
cases of the fKdV, and other most general cases have been obtained by
the authors in [1][2][3][4][5][6].

Using the wave transformation, we have that the equation (5.14) is
reduced to the nonlinear ordinary differential equation (ODE) of fifth
order

W (EWV(E) +avP (EW(E) + W'(E) + Bv'(EW"(E) + v (£) =0
(5.20)

Substituting (2.4), along with (2.5) into (5.20) and collecting all terms
with the same power in @(&), we get a polynomial in the variable

@ = @(&) . This polynomial has the form

a@(E)" +bP(E)" +c@(E)™ +lower degree terms
(5.21)

The parameter m can be found by balancing the high-order linear
term with the nonlinear terms in (5.21). We assume that m =1 to
avoid trivial solutions. The degrees of the highest terms are m +5

(the degree of the term ¢ @(&)™" ), 2m +3 ( the degree of the term

b@(&)™™ yand 3m+1 ( the degree of the term a @(&E)*""' ). The

only integer value of m for which 3m+1=2m+3 or
3m+l=m+5 or 2m+3=m+5 is m=2. Thus, we seek
solutions of (5.20) in the form

&) =a,+ap(§)+a,p’ (&), {=x+At

Using the metanh program (see Apendix) in the form
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metanh [
Ot#+w*6x,x,x,x,x#+a*#*6x,x,x#+[3*6x#*6x,x#+7*#2*6x# &,
X+At, {a.o, aj, az, k, A}, 2]

and defining

A=\Qa+ By —40wy, B=p +AB+2aB-12yw
and C=-F"+AL-2aB+12yw,

we get the following solutions of the general fifth KdV equation Eq.
(5.14)

a) A =—28 a0=—%(A+2a+,8), alz(),

y

—2(4+2a+p).
ul(x'[):w( hz(\/_(yx 2Bk2 )] J

4 4
uz(x,t)—k(ALya*_'B)E oth’ (\/__(yx—ZBkzt) -2

o)== k(A+2a+,6’)[ (

k(A+Za+,6’)[

IS

(yx—2BK) |+2].

| S

u, (x,1) = 3cot’ yx—2Bk2t) +2|.

A =2 a, =2—;‘(A—2a—ﬁ), a, =0, a, =%(A—20’—ﬁ),

¥

s S b B!

ug(x,t) = _k(ALya_ﬁ)[3coth2 [g(yx + chzt)J _2}

u; (x,1) =IC(ALVH_ﬁ){3tan2 (7k( yx+2Ck2t)J +2J.

<
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u, (x,£) = WLV"‘@(g cot? [%(yx + 2Ck2t)J + 2}.

5.1. Special cases of the fKdV.

The program metanh gives the following solutions in the special cases

corresponding to equations (5.15)-(5.19).

5.1.1. Kaup-Kupershmidt equation :

u,

+u

XXXXX

+10uu,, +25u u_ +20u’u, =0.

ul(x,t):4k(3tanh2( k (x-176k%)) - 2).
uz(x,t)=4k(3coth2( k (x-176k%)) - 2).
u3(x,t)=—4k(3tan (V (x- 176k2z))+2).
u4(x,t)=—4k(3c0t (Vi (x-176k% ))+2).

u,(x,) =4 (3tanh2( ( K1) )
g (1) = 4k (3coth® (V=k (x = k%)) -2).
)+2).

)
u7(x,t)=—%k(3tan (Vi (x-k%)
ug(x,t)=—%k(300t (V (x-#1)) + )

5.12. Sawada-Kotera equation (SK equation) :

u,tu

XXXXX

+Suu, +Suu, +5u’u, =0.

u,(x,t) = 6k tanh’ (\/—_k (x - 1242_/{2;)
u,(x,t) = 6k coth? (ﬁ(x - 12451{%)

u;(x,t)=—%k (15tan2(\/; x—““s"zf) +16).
( )
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. uG(x,t)=4k(3coth2(\/_k(x 16k%)) - 2).
. u7(x,t):—4k(3tan2(ﬁ x=16k%) )+2)
. ug(x,t)=—4k(3cot2(\/% x=16k%) )+2)
‘ ug(x,t)=k(6tanh2(\/_k (x-#%))-
1o (x,0) = k(6 coth? (/=& (x ~£1)) -
. un(x,t):—k(manz(\/z )
. ulz(x,t):—k(6cot2(\/z x=kt))+5
- U= 2k(3tanh2 (\/_k(x +ak)) —2).

1))-
. uls(x,t)=—2k(3tan2(ﬁ(x+4k2 ))+2).
¢ () = =2k (3cot (Vi (x+ k%)) +2).

* (3,1 = 6k tanh? (N=k (x = (76K +40a,k +5a})r)) + a,.
* uyy(x,1) = 6k coth® (V=K (x = (76k* +40a,k + 5} )t)) + a.
© uy(x,0) = a, ~ 6k tan® (Vk (x = (76K +40a,k +5a7)r)).

© oy (x,0) = a, =6k cot® (N (x = (76k” +40a,k +542)r)).

6

(x—Sagt)z )

* uy(xt)=a, -

5.13. Lax equation :
w, +u_ +10uu_ +20uu_ +30u’u, =0.

. ul(x,t)=%k(3tanh2(ﬁ(x—%"z’))—5).
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. uz(x,t)=%k(300th2 (x/—_k(x—mfz’))—S).
. u3(x,t)=—%k(3tan2 (\/E(x—3683"2’))+5).

* u(x,t)=-2 (3001:2(\/%()(:_36831{21)

. us(x,t)=2k(3tanh2(\/_k x-56k%1)) -
u6(x,t)=2k(3coth2(\/_k x=56K°1)) - 2).

. u7(x,t)=—2k(3tan (V (x-56k))+2).

. ug(x,t):—zk(scotz(\/% (- 56k%1)) +
s t)—lk(6tanh2(x/_kx ) - 7)
.y (x) = 1k(6c0th2(x/_kx ) - 7)
* o (0r) =~k 6 1an’ (VE (-2 )+7)

))+7

. ulz(x,t)=—§k(6c0t (W (-
. ul3(x,t)=—2ksech2(x/_k(x 16k t))
ty,(5,) = 2keseh? (v/=k (x =16k7)).
tys (5,) = 2k sec® (Vi (x-16k%%)).
© ug(n0) = ~2kese? (Vi (x-16k%)).
1 () = 2k tanh? (V=K (x=2(28K° +40a,k +15a; )1)) +a,

)

* u,(x,t) =2kcoth’ (\/;(x —2[28k2 +40a,k +15a0 )+ a,.
1y (x,1) = a, = 2k tan? (Vk (x=2(28K* +40ak +15a; )1)).

)

. uzo(x,t):aO—chotz(x/z(x 2(28k +40a,k +154; ) t)
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=0~
0

5.14. Ito equation :
w +u  F3uu +6uu  +2u'u =0,

XXXXX

. u(x0) =2k(3tanh2 (V=#x)-2).
u, (x,0) = 2k (3 coth? (V=kx) -2

. u3(x,t)=—2k(3tan2 (Vx

. u4(x,t)=—2k(3cot (Vex

°
~—

uy (3, 1) = 10k(3tanh2

(V=K (x-96k°1)) 2]

u,(x,0) = 10k(3 coth? (v/=k (x-96k*1)) —2).
)+2)

)+2)

6 Conclusions

In this paper, by means of the tanh method and the use of the symbolic
computation package Mathematica, we obtain exact solutions for
several kinds of important nonlinear evolution partial differential
equations. The tanh method is straightforward and effective. We also
may apply the mentioned method to a coupled system of nonlinear
PDE’s. This is the main objective of a forthcoming work. Other recent
works related to exact solutions of nonlinear PDE’s may be found in
[42]-[56].
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7 Appendix : The program metanh.

metanh[op_, xi_, vars_, m0_] :=
Module[{(pl, ©2, 93, 94, ¢5, ul, u2, u3, ud, us5, u, xpl, n,
rules, xp2, system, sols, sols0, solsl, sols2, sols3,
sols4},
k1;

£
uuuuu ’ 7

el = —'\/—k*Tanh['\/—k*xi]; 02 = —‘\/—k*Coth['\/—k*xi];
®3 =‘\/£*Tan[‘\/i*xi]; 04 = '\/E*Cot['\/f*xi]; @5 =-1/x1i;

ul = Sum[a; 1%, {i, 0, m0}]; u2 = Sum[a; 2%, {i, 0, m0}];
u3 = Sum[a; 3%, {i, 0, m0}]; ud = Sum[a; @4, {i, 0, m0}];
u5 = Sum[a; o5%, {i, 0, m0}];
u=Sum[a; @[xi], {i, 0, m0}];
xpl = Numerator [Factor[op[u] /. {xi > &§}]1];
n = Max[Select[Level[xpl, Infinity, Heads - Truel.
Head[#] == Derivative &] //. {Derivative[x_] » x}];

rules = Table[D[¢[£], {§, 3}]1 > D[k +o[£]%,

{&, 3-1}1, {3, 1, n}];
xp2 = CoefficientList[xpl //. rules, @[§]]:
system = Complement [Map[# == 0 &, xp2], {True, False}];
sols = Union[Solve[system, vars]];
sols0 = Union[Select[sols, MemberQ[#, k> 0] &]1;
solsl = Complement [sols, solsO0];

sols2 = Map[{Sort[#], us //. #} &, scls0];
sols3 = Map[{Sort[#], ul //. #, u2//. %, u3d3 //. #, ud //. #} &,
solsl];

sols4 = Join[sols2, sols3]
}; Union[sols4] ] ;
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