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Resumen
La motivación principal en este documento es desarrollar algunos métodos o 
técnicas que nos permita estudiar sistemas complejos (en el sentido de encontrar  
su estructura fundamental o su similaridad con otros). Si nosotros poseemos estas 
técnicas, seremos capaces de abordar una serie de problemas de la vida real que 
hasta ahora no tienen una solución satisfacible. Ejemplos de tales problemas son 
el reconocimiento de objetos en 3D, reconocimiento de palabras manuscritas, 
interpretación de las señales biomédicas y reconocimiento de voz. También 
presentamos una técnica para analizar los sistemas dinámicos basada en su 
comportamiento, donde este puede ser determinado a partir de las trayectorias de 
salida, se utiliza reconocimiento de patrones dinámicos para el análisis de los 
sistemas. Lo anterior nos permite buscar estructura de datos y su clasificación en 
categorías de tal forma que la similaridad entre estructuras de la misma categoría 
sea alta y las de diferente categoría con valores de similaridad baja. 

Palabras clave: Reconocimiento de Patrones Dinamicos, Sistemas Dinamicos 
, Inteligencia Artificial.

Abstract 
 The main motivation of this paper is to develop some methods or techniques that 
will allow us to study complex systems (in the sense of finding their underlying 
structure or their similarity to others). If we have these techniques, we will be able 
to tackle a series of real life problem that until now has had no reliable solution.  
Examples of such problems are 3D-object recognition, handwritten word 
recognition, interpretation of bio-medical signal and speech recognition. In this 
paper, we will present one techniques to analyze dynamical system based on their 
behavior, where that behavior can be determined from the system output 
trajectories. We will use dynamic pattern recognition concepts for dynamic system 
analysis.  It allows us to search for structures in data and classify these structures 
into categories, such that similarity between structures of the same category is high 
and the similarity between structures of different categories is low. 
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1  Introduction 

The similarity plays a fundamental role in the theories of knowledge 
and behavior and has been extensively studied in the psychology 
literature. Traditionally, dynamic system has being studied using formal 
mathematical theories. 

However, these approaches to system modeling perform poorly for 
complex, nonlinear, chaotic, and uncertain system. We believe that a 
possible way to study and analyze such dynamical system is to restate 
the problem as a similarity problem. We ask “is it possible to find a 
match or similarity between the dynamic system under study and know 
dynamical system” this approach is motivated by “Case-Based-
Reasoning” where the premise is that once a problem has been solved, it 
is often more efficient to solve a similar problem by starting from the old 
solution, rather than rerunning all the reasoning that was necessary the 
first time.

2  Problem Formulation 

Traditional approaches to analysis system –e.g. trying to find a 
mathematical model that describe the output as a function of state 
variable and the input perform poorly when dealing with complex 
system. This may be due to their nonlinear, time-varying nature to 
uncertainty in the available measurement.

We can approach the analysis of dynamic system in two different ways: 
the first is based on the existence of a state measuring mechanism in the 
form of mathematical model, in the absence of such a measuring 
mechanism we must resort to some perceptual mechanism, that allow us 
to perceive the underling structure of the system, based on the behavior 
of the dynamic system. The similarity measure is one the possible 
perceptual mechanism that can be used to analyze such systems. One off 
motivations of this dissertation is to discover ways to use structural 
similarity as mechanics to study dynamic system.

2.1 Description Mathematical and Modeling Dynamic 
System

The classic methods of recognition of patterns should be tuned to consider 
desirable problems from the dynamic point of view, that is to say the 
process of objects are described with sequences of temporary observations.
 In the design of dynamic systems and the analysis in the domain of the 
time the concept of states of a system is used, a dynamic system is 
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usually modeled by a system of differential equations.  To obtain 
dynamic system by differential equations that represent the 
relationship between the input variables u (t), u (t),...u (t) and the 1 2 p

output variables y (t), y (t),...y (t), the intermediate variables 0 1 q

receive the name of state variables x (t), y (t),...x (t). A group of 1 2 n

state variables in any instant determines the state of the system in this 
time.

If the current state of a system and the value of the variables are given 

for the behavior of the system can be described clearly.

The state of the systems is a set of real numbers in such a way that the 
knowledge of these numbers and the values of the input variables 
provide the future state of the system and the values of the output 
variables by the equations that describe the dynamics of the system. The 
state variables determine the future behavior of the system when the 
current state of the system and the values of the entrance variables are 
known [2].

The multidimensional space of observation induced by the state 
variables receives the name of space of states. The solution of a system 
of differential equations can be represented by a vector x(t) that 
corresponds to a point in the state space in an instant of time t.  This 
point moves in the space of states like steps of time. The appearance or 
on the way to this point in the space of states is known like a trajectory of 
the system. For an initial state and end state given (1) a number infinite 
of input vectors exist that correspond to trajectories with start and end 
points. Of another side considering any point in the state space goes a 
trajectory exactly by this point [3].

Considering dynamic systems in the control theory, a lot of attention has 
been paid to the adaptive control. The main reason to introduce this 
investigation area is the one of obtaining controllers that its parameters 
can adapt to the changes in the process dynamic and perturbation 
characteristic.

2.1.1 Linear Dynamic Systemss Class
The state of transition of the dynamic system in the internal space and 
the mapped from the space of internal states to the space of observations 
is modeled by means of the following lineal equations.

t >t0 ,
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(i) (i) Where F is a transition matrix; G   is a bias vector. H Is a transition 
matrix that defines the lineal projection from a space of internal state to 

(i)  (i)  the observation space, Notice that each dynamic system has, F G  y
(i) (i) 

W individually. It is assumed that each W is noise identifier and v has t 
(i)normal distribution.  N  (0,Q ) and N  (0,R) respectively.x1 y

The classes of dynamic systems can be categorized by the eigenvalues 
of the transition matrix which determines answers of input zero of the 
system. With other words, these eigenvalues determines the general 
behavior of patterns (trajectories) with temporary variation in the space 
of states.

For the concentration of the temporary evolution of the state in the 
dynamic system, it is assumed that the bias term and that process of 
noise is zero in the equation (1). Using the decomposition of the 
eigenvalues in the transition matrix the following expressions are 
obtained:

It can be solved the state in the time x this way:0  

Where they are the corresponding eigenvalues and 
eigenvectors. The pondered value   is determined from the initial state 
x  by the determination of in the complex plane.0

Of here, the general patterns of a system can be categorized by means of 
the position of the eigenvalues (poles) in the complex plane. The 
determination of the oscillatory states this certain one for their (angle) 
arguments according to the following rules.

It oscillates if at least an eigenvalue is negative or complex. It doesn't 
oscillate if all the eigenvalues has real numbers. The absolute value of 
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the eigenvalue determines the convergence state or divergence in the 
way: It diverges if at least a value of the eigenvalue exceeds in one. It 
converges if all the absolute values of the eigenvalue are less than one.

In the table 1 are illustrated states of trajectories with two-dimensional 
states. The systems can generate patterns for temporary variation if and 
alone if, this pattern converges to zero. (Using control terms is said that 
the system this stable one). 

Table 1. Examples of class of dynamic with bidimensionalidad in the phase state

2.1 Dynamic Pattern Recognition Base
Consider a complex system that assuming different states in the course of 
the time. Each state of the system in the instants of time is considered an 
object to classify. If a dynamic system is observed temporarily, the 
variable value of the features constitutes dependent functions of the time. 

However each object is not only described by one vector of features in 
any instant but also for the history of the temporary development of this 
vector of features. 

The objects receive the name of dynamic whether they represent 
measurements or observations of a dynamic system and it contains 
history of their temporary development. That is to say each dynamic 
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object is a temporary sequence of observations that is described by a 
discreet function in the time. The dependent function of the time is 
represented by a trace, or trajectory, for each object from its initial state 
to its current state in the space features.

In the figure 1 are illustrated trajectories of dynamic objects in a space of 
two-dimensional features. If the form of the trajectories is choice as the 
criterion of similarity the trajectories has three cluster of objects, it can 
be distinguished {A, C}, {B, D, E, G} y {F, H}. These three clusters is 
different to those that are recognized as static objects in an instant in the 
time [6].

Fig.1. Objects in the two-dimensional space of features

If the form and orientation of the trajectories is chosen then as similarity 
approach the objects B, D, E, G they cannot be considered similar and 
they are divided in the following two groups {B, D} and {E, G}. If the 
form and orientation of the trajectories are considered irrelevant but 
their closeness space is then a base for a similarity definition, four 
clusters they are recognized this way {A, B}, {C, D},  {E, F} y{G, H}.

This example illustrates the method of classic recognition patterns in the 
environment dynamic, since it doesn't consider the temporary behavior 
of the system in consideration [6].

2.2.1 Similarity Measure Based on Characteristic of 
Trayectories

Consider a complex system that assuming different states in the course of 
the time. Each state of the system in the instants of time is considered an 
object to classify. If a dynamic system is observed temporarily, the 
variable value of the features constitutes dependent functions of the time. 

In the previous section we consider a criterion for the comparison between 
two trajectories, two similarity types among trajectory can considers:
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Pointwise Similarity: the smaller Pointwise distance between two 
trajectories in feature space. 

Structural Similarity: the better two trajectories match in form, 
evolution, characteristic, and the greater the similarity between two 
trajectories. 

For the determination of the similarity structural it is specified relevant 
aspects of the behavior of the trajectories depending on a concrete 
application. Based on physical properties of the trajectories (e.g. slope, 
curvature, smoothness, position and value of inflection points) can be 
selected, which are then used as comparison criteria. 

In such a way, the similarity structural is suited to situation for when we 
look at the particular patterns in trajectories that should be well 
matched.

2.2.2 Similarity Structural Based of Slope and 
Curvature Trajectories.

The curvature of the trajectories of each point describes the grade with 
the one which a trajectories are s bent in this point. This is evaluated by 
the coefficient of second derivative of a trajectory in each point that can 
be defined by the following equation (for a trajectory one-
dimensional).

Where x  denotes the coefficient of the first derived in the k

point x  and given for: k

Substituting the previous equation in the equation of the bend, you 
arrive to the following equation based on the values of the original 
trajectories

The distinctive characteristic when it is considered the curvature, it is 
the sign of the coefficient of second derivate. If the coefficient is 
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positive in certain period of time, then the trajectory is convex in the 
interval (near to the end). If the coefficient is negative in certain period 
of time, the trajectory is concave (near to the low point). If the 
coefficient is similar to zero in some point that inflection point is called, 
bend is not presented in this point.

In a trajectory, they can be distinguished seven types of segments 
(tendencies), each one of those which this characterized by a constant 
sign in the first one and second derived. Such a triangular representation 
of tendencies provides qualitative characteristic for a description of 
segments. 

To derive quantitative information starting from the segments, these 
they are described by the following group of parameters t(a); t (b) they 
are the instants of initial and final time of the segment. See figure 2.

Fig.2. Qualitative and Quantitative Temporary Characteristics obtained by 
Segmentation

3  Problem Solution 

The key idea for the learning process is that the estimate process is 
divided in to two stages: the process of clustering of dynamic systems to 
estimate a group of dynamic systems and a refinement of parameters of 
the estimated dynamic systems. In this brief, a simple approach is 
proposed to analyze the dynamic clustering in a trajectory for linear 
dynamic system.

3.1 Clusters of Trajectories as Dynamic Systemas 
(Dynamic Objects)

The key idea for the learning process is that the estimate process is 
divided in to two stages: the process of clustering of dynamic systems to 
estimate a group of dynamic systems and a refinement of parameters of 
the estimated dynamic systems. 
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This is the first stage of the process under consideration; it consists 
in finding a set of dynamic systems, the number of dynamic 
systems and their parameters. A group of typical sequences is used 
(for example a subset of given training data) and the sequences 
have already been mapping in the space of internal states. The 
clustering technique estimates a group of dynamic systems; then 
an estimate is made of the N number of dynamic systems and an 
approximation of the parameters of the dynamic 
system. 

The second stage is a process of refinement of the parameters of the 
system based on the algorithm EM. The process is applied to the whole 
of the given training data, while the clustering process is applied to a 
select group of training data. 

tIt is assumed that a sequence of many variables y is a typical 1

training data. The order of the transitions of the dynamic systems won't 
be considered. You can consider a single set of data of training without 
losing generality in this stage of the clustering. 

A group of dynamic systems simultaneously can be identified {D , D , 1 2

..., D } for example the number of dynamic systems and their N

parameters for some interval groups I (For example to 
tsegment and to label the sequence) from the sample of training. y , 1

Where the number of intervals k is also ignored. 

It is assumed that the observation matrix H is given. Using an of 
identification technique of dynamic subspaces for example OM95 
before beginning the clustering stage, you can simultaneously estimate 
the observation matrix H and their corresponding sequence of internal 

tstates x tit can be mapping in an observation sequence given 1

by the matrix. 

3.2 System Identification Bases an Eigenvalues 
To identify the parameters with a small set of data training, one has to 
make restrictions in the eigenvalue to estimate desirable dynamic 
systems. 

This restriction is based on the dynamic stability; the key idea of 
estimating dynamic stability to give constraint in the eigenvalue. State 
of dynamics system change in a stable manner if all the eigenvalues are 
smaller that one

q(i =1,..., N) i 

@ y ,...,y1 T 

q,..., q  1 N

  

@ x ,...,x ;1 T   
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The identification of the system without restrictions is conditioned so 
that the temporary range  [b, e]  is represented by the lineal dynamic 
system D .i 

(i) (i) The transition matrix F  and the vector of  bias g of the sequence of 
(i) (i) internal states x ,..., x are considered. This problem of estimate of b e

parameters becomes a problem of minimization of prediction of errors. 

This vector of error prediction can be determined by starting from 
(i) (i) equation (1) and estimating the matrix F  and the vector of biases g . 

Their formulation is:

So the sum of the norms of the squares of all the error vectors in the range 
[b, e] becomes: 

(i) (i) Finally the optimal values of F  and  g by the solution can be 
determined by solving the following problem of the least mean square.

The identification system with restrictions in the eigenvalue of the 
(i) transition matrix F is deduced from the estimated transition matrix and 

the estimated vector bias and   has the following form:  

(i) Where m  and m  are the vectorial means of the columns in x0 1 0

respectively. The temporal interval [b, e] is represented by a linear 
(i) dynamic system D . Thus we can estimate the transition matrix F by the i 

following equation:

Where  I is the unit matrix, is a positive real value. d 
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(i) (i)T In the eigenvalues constraint, the limit is detained before (X  X +1 0
(i) converges to the pseudo-inverse matrix of  X [1]. Using Gershgorin`s 0

theorem in linear algebra [4], we can determine the upper bound of the 
eigenvalue in the matrix. 

Suppose     is an element in row u and column v of the transition 
matrix .  Then, the upper bound of the eigenvalue is determined by 

                                .  Therefore, we search for a nonzero value for ; 
which controls the scale of elements in the matrix , which should 
satisfy the equation via iterative numerical methods.

For the evaluation, we used two simulated sequences of a physic 
problem as training data to verify the clustering method, because it will 
provide new paper system identification.

Table 2. Behavior of Sequences Pattern

Table 3. Clustering Trajectories of Dynamic System

2 -1 d I)

d

(i)
f ( u, v )

(i)
F

(i)
F

, B=1 
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Table 4 Initial values of Clustering Trajectories of dynamic system

The analysis of the cases: the worst case  , the best case  
and the average 0.25 produce following result: 

With a data matrix for each dynamic system, the transition matrix is 
possible to estimate follow way: 

The analysis of the cases: the worst case , the best case  and 
the average 0.25 produce following result:  

2 2d = 0 d = 1

2 2d = 0 d = 1
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4    Conclusión 

In this paper, we proposed a novel computational model, named 
clustering based on structural similarity to model dynamic systems and 
their structures. The temporal segmentation and system identification 
problem need be resolved simultaneously; we showed that the system 
can analyze dynamic features based on the timing structure extracted 
from temporal intervals. We applied the proposed model to describe 
dynamic structure that consists on primitive's pattern. Problem to 
determine the appropriate number of dynamic systems, there are 
several well know criteria between find knee of the log -likelihood 
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curve and an evaluation functions that consist in the log-likelihood 
scores and the numbers free of parameters.
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