
A Classification framework for Software
1

Requirements Prioritization Approaches

Nadina Martinez Carod* Alejandra Cechich*
Fecha de Recibido: 19/04/2006 Fecha de Aprobación: 15/03/2008

Abstract

The task of eliciting requirements has became extremely difficult
because stakeholders have different perspectives on an
expectation on a system. Besides, the time to obtain the final
product is limited. To overcome this situation, a requirements
ranking may help in planning releases by indicating which
functions are critical and which ones can be added, and in what
order, over successive releases. The prioritizing process must hold
stakeholder satisfaction considering high-priority requirements
first. However, practical experience shows that prioritizing
requirements is not as straightforward task as the literature
suggests. Considering that, this paper has two goals: the first one is
to present a classification framework for software requirements
prioritization approaches (emphasizing differences and
similarities among eleven selected approaches); and the second
one is to show the approaches' weaknesses and to propose possible
improvements for future research on this line.

Keywords : Software Requirements Prioritization, Cognitive
Informatics.

 This work is partially supported by UNComa project 04E/059
* Universidad Nacional del Comahue, Departamento de Ciencias de la Computación,
Neuquén, Argentina 8300. Email: namartin, acechich@uncoma.edu.ar
‡ Se concede autorización para copiar gratis parte o todo el material publicado en la
Revista Colombiana de Computación siempre y cuando las copias no sean usadas para
fines comerciales, y que se especifique que la copia se realiza con el consentimiento de la
Revista Colombiana de Computación.

REVISTA COLOMBIANA DE COMPUTACIÓN
Volumen 10, número 2
Págs. 99 - 129

1 Introduction

Requirements engineering takes care of activities which attempt to
understand the exact needs of the users in a software system and to
translate such needs into precise and unambiguous statements, which
will be subsequently used in the development of the systems. In most
cases, defects of the software are originated in the requirements phase.
Once defects are embedded in the requirements, they tend to resist
removal. According to Young [36], 85% of the defects of developed
software is originated in the requirements. The common and more imp
ortant types of requirement errors are incorrect assumptions (49%),
omitted requirements (29%) and inconsistent requirements (13%).

As part of Requirements Engineering, “Elicitation” is the phase where
an analyst collects information from the stakeholders, clarifies the
problems and the needs of the customers and users, tries to find the best
solutions, and makes its planning on what software system will be
developed. Elicitation is the process of acquiring all relevant knowledge
needed to produce a requir ement model of a problem domain. In
elicitation, to get well-defined requirements, a consensus among the
different stakeholders is needed. There are several elicitation techniques
in the literature [29][23][36], however every technique faces the same
problem: each stakeholder has different requirements and priorities,
which potentially produces conflicting situations. In these cases,
stakeholders must negotiate the “right requirements” [11][28] which
implies prioritization of software requirements. Nevertheless, often the
strategies implemented to solve conflicts among stakeholders are
inadequate; for example, weighting requirements can be problematic
because sometimes weights are inconsistent and lead to confusion about
which are the most essential customer requirements. More sophisticated
methods, such as the AHP, and the Cost-Value [30][20], have received
some interest in the application of elicitation procedures, and simpler
decision -making techniques [5][16], or visualization techniques [15]
have been found out to be appropriate to resolve disagreements
promoting a cost-effective use. In any case, clearly defining a way of
balancing preferences on requirements is essential to the elicitation
process.

On the other hand, the requirements elicitation techniques have widely
used a family of goal-oriented requirements analysis (GORA) methods
[1][4] [10][14][18] as approaches to refine and decompose the needs of
customers into more concrete goals that should be achieved. Particularly,
a proposal called AGORA [17] extends a version of a Goal-Oriented
Requirements Analysis Method by considering detecting and resolving
conflicts on goals; the work in [17] considers greater priority when there
exists a dependency between requirements, and these interdependencies

100 Nadina Martinez Carod, Alejandra Cechich

can be identified before they are negotiated. More recently, the Goals -
Skills -Preferences Framework [13] is used to generate a customizable
software design; or techniques from Cognitive Informatics try to find
solutions to communication problems during all stages of software
engineering [34][35][24] . Some comparisons of elicitation methods
have clarified common features. Firstly, the comparative study by
Thomas and Oliveros [33] is centralized in properties and limitations of
five of the most significant methods for eliciting requirements in goal-
oriented requirements engineering. This comparison is organized from
the viewpoint of goal acquisition with special emphasis in goal
elicitation. Secondly, based on an evaluation framework and influenced
by an industrial application, Karlsson [20], characterizes six different
methods for prioritizing software requirements. The objective of
Karlsson's evaluation is outlining the methods' behaviour for a particular
experience, thus the results obtained are not supposed to be generalized
by any environment for any application. This evaluation framework is
based on inherent characteristics, objective measures and subjective
measures.

In this paper, we focus on design and cognitive aspects as main features
to characterize different approaches to prioritise requirements, aiming at
identifying possible improvements to the processes. Let us briefly
clarify the meaning of cognitive aspects in our context. Cognitive
informatics (CI) is an interdisciplinary field composed by the
intersection of a number of existing disciplines like psychology,
philosophy, linguistic and computer science. In [34], Wang define CI as
“a branch of information and computer science that studies computing
by cognitive methodologies and studies cognitive science by informatics
and computing theories”. CI can be studied from the artificial
intelligence as from the software engineering area. Artificial intelligence
studies the mechanisms of natural intelligence and the architecture of the
brain [31][3][35] often ignoring psychological aspects of intelligence.
On the other hand software engineering is interested in explaining the
mechanisms and processes of memory learning and reasoning.
Particularly, people have different behavioral characteristics and there
are many learning style models to classify people according to those
characteristics. In [24], we have proposed analyzing learning and
communication aspects of a particular stakeholder by using the Felder-
Silverman learning style model. Our argument for doing this is the
identification of an analogy between stakeholders and roles in learning
style models during elicitation processes, where each stakeholder must
learn from others. Therefore, how a particular approach addresses
stakeholders' learning and communication features is considered here as
the basis for evaluating cognitive aspects.

101
A Classification framework for Software Requirements Prioritization Approaches

This paper introduces an extension of the framework presented in [26].
The remainder of the paper is structured as follows. Section 2 describes
the conceptual framework to evaluate several proposals. In Section 3 we
introduce some approaches of prioritizing requirements, and describe
them in terms of the framework. Conclusion and future work are
presented in Section 4.

2 A Classification and Comparison Framework

Our Classification framework, depicted in Fig. 1, is structured in two
building blocks, design features and cognitive features.

Fig. 1. A conceptual framework for comparison

Our classification framework, depicted in Figure 1, is structured into
two building blocks – design features and cognitive features.

The design category is composed of four elements which consider
different specifications: Process, Stakeholders, Implementation and
Requirements. The specific features of each prioritization requirement
method are categorized by the Process element. It considers answering
some questions, such as: Does the process detect inconsistency?, Is the
process referred to as a systematic or a rigorous process? How we
address the problem of dealing with different priorities? Conceptually,
is it based in goal decomposition? Does it use a priority or an importance
order?

The framework also characterizes how prioritizing methods consider
stakeholders. There are two parameters to be analyzed: the former refers
to the kind of information the method provides with respect to
stakeholders. Does the method analyze which stakeholder prioritized a
goal, and which priority degree was assigned? The second parameter

102 Nadina Martinez Carod, Alejandra Cechich

considers stakeholders geographically distributed. The implementation
category depends on the method's scalability and dynamism, i.e.
usability. It is influenced by how many and which calculus the method
uses, and by the performance of the method with a huge number of
requirements. It is considerably important whether the method is
supported by tools, as well as a reference to spread projects it was
applied. The framework considers information that can demonstrate the
method's success in pilot studies.

The Requirements element analyzes functional and non functional
requirements as well as interactions among requirements –
interdependency represents requirements interaction. Some methods
calculate cost and benefit figures for individual requirements, but if
there are significant interactions among requirements the situation
becomes more complex. As an example, if two requirements in a
method can be achieved by sharing the same solutions to sub-problems,
then the cost of attaining both of them may be significantly less than the
sum of their individual costs. Therefore, the main key is whether the
method can handle requirements' interdependencies. FR & NFR
analyses study if the methods are well suited for functional and non
functional requirements.

The cognitive aspects cover the evaluation of cognitive features as
participation and negotiation among stakeholders during the whole
process. Evaluation studies what personal characteristics serve to
establish priorities. Participation includes defining how priorities were
assigned (subjective or objective) from personal experiences and
interviews to ensure the success of the developed method.

To compare those features, we have applied a systematic method to
validate and evaluate several proposals: the DESMET method [22].
Particularly, its feature analysis allows the framework to be expressed
in terms of a set of common attributes, characteristics or features. To
judge the relative order of merit of a specific feature, it is classified in a
common judgement scale: Mandatory (M), Highly Desirable (HD),
Desirable (D) and Nice to have (N). Then the involved methods have to
be judged according to the level of support of a particular feature.

There are two types of features: (1) simple features, that are either
present or absent, and are assessed by a simple YES/No nominal scale;
and (2) compound features, where the degree of support offered by the
method must be measured on an ordinal scale.

A diffe rent score must be assigned to simple and compound features.
The following generic judgment scale is used to assess a method for a

103
A Classification framework for Software Requirements Prioritization Approaches

particular compound feature: (0) No support – the feature is not
supported; (3) Moderate support – the feature is supported in some
specific cases; and (5) Strong support – the feature is supported in all
cases.

An analysis based on accumulating the absolute scores must assess the
relative importance of features. This analysis uses the importance
assessment as a weighting fac tor. Although there is no defined rationale
for determining appropriate weights, we use the following ones:
Mandatory features (10), Highly desirable (6), Desirable (3), and Nice
to have (1). Once each method has been scored for each feature of the
framework by using a common scale, the results for the methods have to
be compared to decide their relative order of merit.

Once each method has been scored for each feature in the framework,
using a common scale, the results for the methods have to be compare d
to decide their relative order of merit.

2.1. Prioritization Approaches
In this section we briefly introduce some approaches on requirements
prioritization presented in the literature.

AGORA is an extended version of the Goal-Oriented Requirements
Analysis Method [17]. Goal based techniques begin with highest level
goal identifications and derive them into sub - goals. Initial goals can
be considered as the needs of the customers. Usually, a goal is
decomposed into a number of more specific sub goals. The sub-goals
are connected to their parent goals with directed edges. There are two
types of decomposition corresponding to the logical combination of
the sub-goal. The AND – decomposition, unless all of the sub-goals are
achieved, their parent goal cannot be achieved or satisfied. The OR -
decomposition, when at least one sub-goal is achieved, its parent goal
can be achieved. The decomposition of goals can continue too many
different levels of abstraction, creating a goal hierarchy. In many
situations a sub -goal may be instrumental to more than one goal.
AGORA goal graph is an attributed AND-OR graph where attribute
values (contribution values and preference matrices) are added to goal
graphs. The contribution of an edge stands for the degree of the
contribution of the sub -goal to the achievement of its parent goal,
while the preference matrix represents the preference of the goal for
each stakeholder. The preference matrix is attached to a goal. The
contribution value expresses how many degrees the sub -goal
contributes to the achievement of its parent goal, and the higher the
value is, more contribution the sub-goal provides. Each stakeholder
does not only attach the preference value on his own, but also estimates

104 Nadina Martinez Carod, Alejandra Cechich

the preference values of other stakeholders. As a result, these
preferences are represented in the form of a matrix. The stakeholders
attach the value subjectively.

The Analytical Hierarchy Process (AHP) Model was designed by TL
Saaty as a decision making aid [30]. It involves building a hierarchy
(ranking) of decision elements (candidate requirements) and then
making comparisons between each possible pair in a matrix. This
weighs each element within a cluster (or level of the hierarchy) and a
consistency ratio (useful for checking the consistency of the data).
The Analytic Hierarchy Process compares alternatives in a stepwise
fashion and measures their contribution to the main objective of the
process [20]. The AHP assumes that the problem under investigation
can be structured as an attribute hierarchy with at least three levels. In
the first level, the overall goal is described. The second level
describes the different competing criteria that refine level 1. The third
level is used for the selection from competing alternatives. At each
level of the hierarchy, a decision maker performs a pair wise
comparison of attributes assessing their contribution to each of the
higher level nodes to which they are linked. These comparisons
involve preference ratios (for actions) or importance ratios (for
criteria). The expert decides, for each pair, a number that represents
the importance of a term respect to other term of the pair to describe
the domain. The overall method consist of: Firstly the candidate
requirements are reviewed by the requirements engineers for
completeness and to ensure that they are stated in an unambiguous
way. Secondly, stakeholders apply the AHP' pair -wise comparison
method to assess the relative value of the candidate requirements.
Thirdly requirements engineers use AHP' pair-wise comparison to
estimate the relative cost of implementing each candidate
requirement and use AHP to calculate each candidate requirement's
relative value. Finally, stakeholders analyze and discuss the
candidate requirements. Based on this discussion, software managers
prioritize the requirements and decide which will actually be
implemented.

The Cost-Value Approach, designed by Karlsson and Ryan
prioritizes requirements according to their relative value and cost
[20]. The method is based on an analytical technique and provides a
clear indication of the relative costs and values of all candidate
requirements. In this approach Value is interpreted in relation to a
candidate requirement's potential contribution to customer
satisfaction with the resulting system. Cost is the cost of successfully
implementing the candidate requirement. To investigate candidate

105
A Classification framework for Software Requirements Prioritization Approaches

requirements, it uses AHP to calculate each candidate requirement's
relative value and implementation cost, and plots these on a
cost–value diagram. The stakeholders use the cost–value diagram as
conceptual maps for analyzing and discussing the candidate
requirements. Based on this discussion, software managers prioritize
the requirements.

The Win-Win approach [11] is a negotiation process where people do
not get everything they want but they can reasonably assure of getting
whatever it is to agree them. It consists in a set of principles, practices,
and tools, which enable stakeholders to work out a mutually
satisfactory set of shared commitments [2]. In this methodology
stakeholders express their goals as win conditions and if everyone
concurs, the win conditions become agreements. When stakeholders
do not concur, they identify their conflicted win conditions and register
their conflicts as issues. In these cases, stakeholders must find out
options for mutual gain. Options are iterated and turned into
agreements when all stakeholders concur. The stakeholders are in a
Win-Win equilibrium condition when the agreements cover all of the
win conditions and there are no outstanding issues. The Win-Win
approach defines a set of activities guiding stakeholders through a
process of gathering, elaborating, prioritizing, and negotiating
requirements. The overall method consist of a repeatable requirement
negotiation process: First the team builds a clean list of win conditions,
then, they categorize them among the stakeholders, and organize them
into predefined buckets. Stakeholders have to refine agreements into
more measurable requirements.

Quantitative Win-Win is a quantitative evaluation of alternatives of
the Win -Win approach to support decision-making [28] that uses an
iterative approach. The added value of this approach is its ability to
offer quantitative analysis as a backbone for actual decisions. The
method consist of three components: Firstly it uses the Analytical
Hierarchy Process for a stepwise determination of the stakeholders'
preferences in quantitative terms. Secondly, these results are
combined with methods for early effort estimation. Thirdly, it
reflects the increasing knowledge about the requirements at each
iteration cycle. Each one consists of six consecutive steps. In the first
step the requirements subset of the original set is defined by a
threshold value level assigned by the experts. In the second step, the
preferences are computed from the perspective of the overall
business value, applying AHP and resulting in normalized vectors of
weights. During the next step the same task is done from the
perspective of the individual stakeholders. The two previous steps
are arranged as a matrix M with step 3 as rows and step 2 as column
vector. Then, the original set of requirements is extended by the

106 Nadina Martinez Carod, Alejandra Cechich

added requirements in later stage. At last this method checks
feasibility of requirements.

The Requirements Interdependencies technique (RI) uses conjoint
analysis as a tool to determine stakeholder' preferences on an
individual item and can be used to detect conflicts among stakeholders
[8]. It considers the software project as a product with attributes
(functional and non -functional) that define the class of a product. The
technique studies the dependencies and correlations between the
attributes. Different ways of process implementation can be evaluated
varying the values of these attributes. The attributes have to be chosen
in order to meet the stakeholders' expectations. Therefore it measures
the utility of a given project realization as perceived by the
stakeholders. This technique obtains individual utility functions for
each stakeholder. Although there are by now various conjoint analysis
techniques with different approaches on how to perform the product
comparison, the predominant technique in industrial applications is
the Adaptive Conjoint Analysis (ACA). ACA [12] allows evaluate
product classes with a quite large number of attributes. The overall
method consist of: Firstly the stakeholder ranks the level for each
attribute individually indicating the importance of it. Next each
stakeholder must choose between pairs of products presented
adaptively. Based on stakeholders' preferences, the engineers can
group people with similar characteristics together and determine a
utility function for each person on the subset of attributes relevant to
him. For each role, all individual utility functions have to be
aggregated into a single utility function, this is done by averaging. It
first identifies the most important attributes for each role. In a second
step it studies how fixing the preferred attribute levels of a certain role
affects the utility for the remaining roles. Although this method has the
same philosophy of AHP, it has no explicit methodology to resolve it.

Quality Function Deployment method (QFD) is typically applied to
small subsystems [5]. A customer desire is the quality demanded by
the customer. A quality characteristic is a measurable attribute by
which one can measure whether a customer is getting the demanded
quality. A function is something the system must do to ensure the
demanded quality. A function is defined in the form <verb, noun>.
Quality characteristics and system functions intersect, to define a
requirement variable of the form <function, attribute> which is
equated to a constant to define a requirement. Requirement variables
can be fixed to create requirements or they can be used as design. In
QFD, each customer desire is given a value. Quality characteristics are
defined through brainstorming to generate an affinity diagram. After
forming a tree diagram of the chosen quality characteristics, those at

107

A Classification framework for Software Requirements Prioritization Approaches

108

the lowest level are placed on the axis of a matrix. The customer desires
are placed on the other axis. Each quality characteristic is compared
with each customer desire to determine the correlation level. The
product of the customer desire values and the correlations for a specific
quality characteristic provide a value for that quality characteristic.
This is interpreted as the value of a quality characteristic for a specific
customer desire valuation. The vector of values of customer desire is
transformed to a vector of values for quality characteristics using the
customer desire/quality characteristic correlation matrix. The same
process is used to identify functions, correlate them with customer
desires, and transform customer desire values to function values using
the customer desire function correlation matrix. Quality characteristics
and functions can be ranked in terms of transformed customer value in
order to prioritize tasks.

The Multi-Criteria Preference Analysis Requirements Negotiation
(MPARN) is a systematic model to guide stakeholders from options
to agreements using multi-criteria preference analysis techniques
[16]. The process provides a systematic means of identifying the win
conditions of all stakeholders, and the multi-criteria analysis
quantifies each stakeholder' view of each option's performance on
each criterion considered important. It cooperates with the artifacts
of the win-win analysis. Preference analysis can be a useful tool in
identifying the value of each alternative's features to individual
group members. The MPARN process prioritizes stakeholders´
needs by identifying conflicts and exploring conflict resolutions. The
overall process includes elicitation of win conditions, identification
of conflicts between stakeholders, and exploring conflict -
resolutions options. It also explores objective criteria where the
process of identifying preference functions begins with expression of
criteria of importance, followed by identification of options under
consideration, scoring of these options on the criteria identified, and
elicitation of tradeoff relationships. The options are assessed based
on the criteria, once this list of criteria has been developed. Each
stakeholder assesses each option's performance on each criterion.
Scores are assessed for each option on each criterion. Then it obtains
relative weights for criteria by each stakeholder. Many methods can
be used as direct subjective evaluation, the SMART method [7], the
ratio pair-wise comparison method or the geometric progression
method. The prior steps will provide sufficient information to
identify the preference ranking over the options for each stakeholder
of the group, through a value function given earlier, the sum product
of weights time scores for each option over all criteria. At last it
realizes a post-analysis for agreements.

Nadina Martinez Carod, Alejandra Cechich

The Visualization technique uses visualization tools to requirements
conflict identification and resolves problems with exploration of
potential solution approaches [15]. The technique represents
stakeholder perceptions, measures consensus among the perception,
and visualizes the perceptions (support collaborative prioritization
of requirements among a group of stakeholders using visualization
aids). It proposes Clustering Analysis as a technique to identify
stakeholder subgroups having different opinions. The evaluation of
each stakeholder is recorded in a value pair of Importance-Difficulty.
In order to determine the accepted level of agreements between any
two stakeholders, it uses a measure, called "consensus factor", that is
a function of the votes of the two stakeholders on all the influencing
criteria associated with the issue. It defines thresholds for consensus
measures to identify whether a situation is of complete or partial
agreement. Visualization aids reveal, at a glance, the positions of all
the stakeholders as well as conflict in perceptions. Usually in this
visualization, a cluster of dots is used to represent the density of
stakeholders having the same or similar perception as represented by
their votes. The visualization shows the ranges of votes
characterizing the different clusters, and how the current stakeholder
has voted with respect to them. The identification of the classified
groups helps stakeholders to understand the conflict situation. In a
multi-issue, multi-stakeholder situation, the cluster identification
provides a way to abstract essential knowledge about the voting
patterns from massive detail. It provides structured support for
formal elicitation of stakeholder knowledge.

The Goals-Skills-Preference framework presented in [13] is used to
generate a customizable software design. This framework performs
requirements analysis on user goals, skills and preferences which
need to be identified by requirements engineers and made available to
the user at run-time for possible adjustments. The process consists of
some components: First, the method used by any elicitation technique
to identify goals. The second component identifies the set of required
skills, combining the set of required skills and the supported skills.
The third component concerns user preferences. The result of this
elicitation process is a set of preferences. In the analysis phase, the
framework takes requirements as input and generates a set of ranked
alternatives for the design phase. An alternative is defined as a set of
tasks that together fulfill a set of target goals. In the design phase each
alternative corresponds to a group of software components forming a
particular architecture. Developers select a set of classes according to
user profile, and the software configuration process can be performed
by the user at run time.

109

A Classification framework for Software Requirements Prioritization Approaches

The Psychotherapy for System Requirements approach consists of a
series of items that can be used to assist the analysts and quality
assurance of customer requirements [29][9]. This methodology is
transferred from the discipline of psychotherapy to the field of
requirements engineering. It can be practice in oral and written
requirements. Although this set of rules reduce the risk of getting not
well-defined requirements, and that have been implemented
successfully in some projects; it only helps the analyst in the
elicitation process. It is implemented using natural language in
informal notation, and is not been considered as an acquisition
technique since it is not supported by any specification language, or
by any automated tool.

3 Characterizing Requirement Prioritization
Approaches

3.1 Applying the Framework
This characterization has three scenes: the first one emphasizes
features presented in all methods and classifies them according the way
they are implemented in each method , next it considers simple
features; and last it gives compound features details.

3.1.1. Features provided
There are some features that cannot be assessed according to the degree
of importance because they are present in all methods. The way in
which each method maintains these characteristics are detailed in Table
3. The features are as follows: 1. Method: The process is a method itself,
it is composed of other methods or it is part of other methods, 2.
Calculus: what type and number of calculations it makes, 3.
Negotiation Process: how the method provides artefacts to support
negotiation.

Identifying stakeholders – individuals or organizations who stand to
gain or lose from the success or failure of a system – is a critical task.
Stakeholders include customers or clients (who pay for the system),
developers (who design, construct and maintain the system), and users
(who interact with the system to get their work done). Users themselves
are not homogeneous, and part of the elicitation process is to identify
the needs of different user classes, such as novice users, expert users,
occasional users, disabled users, and so on. In case of diverging
opinions between stakeholders, they must work out to develop
acceptable solutions for all people involved. One of traditional pitfall

110 Nadina Martinez Carod, Alejandra Cechich

during an elicitation process is that people interpret things in the light of
their own background assumptions, uncertainty generates useless
information. Besides, often developers cannot implement all
requirements because of time and resource constraints. Instead, they
focus on implementing firstly the requirements that are set as the most
important. This fact implies a negotiation process to balance conflicting
requirements. From this point of view, negotiation may be seen as the
key of a successful software projects development. This is the reason
why one classification feature is the way the method solves the
incompatibilities between stakeholders' priorities. The stakeholders can
probably agree on requirement priorities informally. Larger or more
contentious projects need a more structured approach, which removes
some of the emotion, politics, and guesswork from prioritization. All
participants must agree on what they are saying when they approve the
requirements, and they must understand the costs of making changes in
the future. The negotiation process also includes renegotiate
commitments when new requirements are accepted.

111
A Classification framework for Software Requirements Prioritization Approaches

Table 1. Characterization in terms of important features

3.1.2. Simple features
The simple features we considered to analyze processes are:
Consistency: Specifies whether the process detect inconsistencies,

112 Nadina Martinez Carod, Alejandra Cechich

2.Rigorous: The process (method) is systematic or rigorous, 3.Goal
decomposition: The process is based on goal decomposition, 4.
Priority: Priority goals with precedence, 5. Requirements
Interdependence: The process identifies dependences among
requirements, 6. Objective: How the priorities are assigned:
subjectively or objectively.

In Table 1 we can observe there is not a complete, simple, fast and
reliable prioritizing approach. Neither of them provides specific tools
to solve conflicts. Some approaches as Goals - Skill and Preferences
(GSP) and AGORA are based on goals, others such as the Win -Win,
Quantitative Win-Win and Visualization Issue technique, on
negotiation processes, and some others such as QDF and MPARN are
based on industrial and decision-making techniques. On the other hand,
AHP and Cost-Value are based on pair wise comparison, and the
Psychotherapy for System Requirements method is based on human
interaction using natural language and is the only method that cannot
establish priorities between requirements. AGORA, as the methods
based on negotiation processes, can detect such inconsistencies. In
these methods, we can see both win conditions and candidate
requirements as initial goals. Considering this aspect, only the GSP and
AGORA approaches allow decomposition from needs of the customers
into sub-goals. Although both AHP as Quantitative Win -Win are
reliable, they require a large number of mathematical calculations to
prioritize few requirements. Only the Psychotherapy from System
Requirements takes cognitive aspects into account allowing people
specify what they really mean. However, it is not a formal or systematic
method.

Generally speaking, the approaches use cognitive aspects only during
the negotiation phase, where the analyst must reach mutual consensus.
For example, the Cost-Value approach applies the AHP method to
assess each candidate requirement relative value as implementation
cost. In the case of the Quantitative Win -Win, the overall method
consists of three main components: The first one is the use of the AHP
method, the second is the separation of the required importance level of
candidate requirements, and thirdly the selection for requirements
subset under given resource constraints.

Table 2 summarizes the previous discussion by characterizing the
methods in terms of the framework's simple features we have
introduced in section 2.

113
A Classification framework for Software Requirements Prioritization Approaches

114 Nadina Martinez Carod, Alejandra Cechich

Table 2. Characterization in terms of simple features (Cont)

Information gathered during requirements elicitation often has to be
interpreted, analyzed, modeled and validated before a complete and
enough set of requirements of a system is collected. An important first
step in improving the elicitation process is to recognize the real
requirements.

Many times two stakeholders agree on requirements with opposite
meanings, which turns impossible the implementation of those
requirements. These are called requirements inconsistencies.
Inconsistencies arise as a result of conflicts between requirements.
Each inconsistency implies that some action is needed, to identify the
cause and seek a resolution. We consider this action highly desirable
because if a process can detect inconsistencies, then it probably
achieves more reliable results. A concept related to the inconsistency is
the ambiguity. Ambiguity means that a requirement statement can have
several different meanings and the stakeholders cannot be certain of
which is correct. A more insidious form of ambiguity results when
multiple stakeholders interpret a requirement in different ways. Each
stakeholder concludes that his or her interpretation is correct, and the
ambiguity remains undetected until later.

If a method is rigorous and systematic it ensures the success of the
process, providing robust and comprehensive steps and handling
requirements consistently and effectively, which became this feature
highly desirable. It aids in the validity and verification and it is related
intimately to the consistency of requirements.

There are a number of inherent difficulties in the process of identifying
stakeholders and their needs. Stakeholders may be numerous and
distributed. Their goals may vary and conflict, depending on t heir
perspectives of the environment in which they work and the tasks they
wish to accomplish. Stakeholders' goals may not be explicit or may be
difficult to articulate, and, inevitably, satisfaction of these goals may be
constrained by a variety of factors outside their control. Goals denote
the objectives a system must meet. Eliciting high level goals early in the
development process is crucial. However, goal-oriented requirements

115
A Classification framework for Software Requirements Prioritization Approaches

elicitation is an activity that continues as development proceeds, as high
level goals are refined into lower level goals. Therefore, the process
based on goal decomposition is desirable in a prioritization process.
Eliciting goals focuses the requirements engineer on the problem
domain and the needs of the stakeholders, rather than on possible
solutions to those problems.

All requirements are not top priority. Requirements specialists and
developers must be trained not to make assumptions, not to make
requirements decisions, and not to add features and capabilities to
systems when they are not part of the real requirements. Discussion of
requirements priorities improves communication between the customer
and the developer and helps to resolve conflicts. We can see Priority as a
key attribute of each requirement (that should be included in
requirements database). It is not a direct measurement, at least not if it is
assigned in an objective way. It will never be a single value; instead, a
feature's priority is a combination of two or more measurements that
interact and influence each other. The relative priority is an important
attribute of each functional requirement. Various stakeholders might
interpret high priority differently, leading to mismatched expectations
about what functionality will be included in next releases. One difficult
is that users are reluctant to prioritize requirements because they fear the
developers will automatically restrict the project to the highest priority
items and the others will never be implemented. It is important to
compare the priority of each proposed requirement change against the
body of requirements remaining to be implemented. Requirements
prioritization plays a key role in the requirements engineering process,
in particular with respect to critical tasks such as software release
planning. Therefore, we consider mandatory the process of deriving an
order relation on a given set of requirements, in order to assign a priority
order, with the ultimate goal of obtaining a shared rationale for
partitioning them into subsequent product releases.

The different occurrences of requirements changes throughout the life
cycle points out some dependencies among functional requirements.
Understanding these dependencies may improve the requirements
process. The dependencies among software functions can be evaluated
by the number of common fault reports arose during the software life
cycle. One hypothesis implies that if two functions are modified due to
the same fault report, then there are some requirements
interdependencies between them. Thus an analysis of such identified
fault reports is desirable as it may give important information about
requirements (it prioritizes methods looking at the connections and
interrelationships among different requirements).

116 Nadina Martinez Carod, Alejandra Cechich

The process of negotiation involves both prioritizing requirements,
and selecting the adapted set of requirements to be satisfied. One
disadvantage detected is that in many methods only one stakeholder
has the responsibility of estimating the relative requirements value,
which became the process subjective. We suppose as desirable that the
process considers the search of solutions to be as objective as can be
possible.

The simple feature table (Table 3) has the following scores
(considering a YES feature with score of 5 and a NO simple feature
with a score of 0):

Table 3. Score of simple features

3.1.3. Compound features
A specific set of compound features can be: 1.Traceability: Captures
which stakeholder prioritizes some aspects and why, 2. Distributed
stakeholders: Weather the stakeholders can work in a collaborative
environment, 3. Computational tools: Supported by computational
tools, 4. Experience: The method has been validated in a case study
involving real requirements and it has been practiced in large scale
development, 5. Cognitive aspects: Weather the requirements
prioritization process can be adjusted based on stakeholders' profiles
using cognitive aspects of stakeholders , 6. Human experience :
Experience needed for implementation and the minimum number of
interviews needed for successful results, 7. NFR : All methods
consider functional requirements but only some of them are
developed for both Functional Requirements and Non Functional
Requirements (FR & NFR).

117
A Classification framework for Software Requirements Prioritization Approaches

118 Nadina Martinez Carod, Alejandra Cechich

119

Table 4. Characterization in terms of compound features (Cont.)

For each compound feature the values 0,3,5 have the following
meanings;

A Classification framework for Software Requirements Prioritization Approaches

�Traceability: “0” indicates that it is not possible to determine which
stakeholder (or what group of stakeholders) prioritized each
aspect; “3” indicates that it is possible to determine who prioritized
some requirements, but the reason cannot be determined; and “5” is
used to score the methods that keep the reason why each participant
prioritized requirements.

�Distributed stakeholders: “0” indicates that the methods do not
support collaborative environments; “3” indicates the methods are
supported by distributed groups (i.e., Visualization Issue and QFD);
and “5” indicates the method can operate with stakeholders in a
collaborative environment (i.e., Win -Win, and Requirements
Interdependence).

�Computational tools: “0” indicates methods with no computational
support (i.e., Psych. P.R.); “3” indicates both – only some processes
of the method are supported by computational tools or the
computational tools are partially implemented; and “5” indicates
the method is completely supported by computational tools.

�Experience: “0” means the method has not been empirically
validated; “3” indicates small experiences/ projects with real
requirements; and “5” indicates the method has been used in spread
projects,

�Cognitive aspects: “0” means the method does not consider
cognitive characteristics in any aspect;“3” indicates methods
which consider cognitive aspects but they do not use them in order
to average weights (i.e., GSP); and “5” indicates methods where
the weights of stakeholders' perceptions can be adjusted based on
stakeholder profiles (i.e., QFD).

� Human experience: “ 0” is assigned to the methods that require
much experience and a great number of interviews (or too long
processes); “3” is assigned to processes that although do not
require much experience, they require a great number of
interviews; and “5” is for processes that do not require previous
experience nor several interviews (i.e., only Psych. P.R.)

�Non functional requirements: “0” is for the methods that cannot be
used for nonfunctional requirements (i.e., AGORA, Visualization
Issues, and GSP); “3” is for methods that can use non functional
requirements; and “5” is assigned to methods thought for both
types of requirements.

In Table 5, we judge the degree of support of the compound features
on an ordinal scale (0: no support; 3: moderate support and 5: strong
support).

120 Nadina Martinez Carod, Alejandra Cechich

Table 5. Score of compound features

Requirements traceability is defined as the ability to describe and
follow the life of a requirement, in both a forward and backward
direction (from its origins, through its development and specification,
to its subsequent deployment and use, and through periods of ongoing
refinement and iteration in any of these phases). Traceability includes
providing requirements management and maintaining information of
which stakeholders prioritize requirements and why, in order to
facilitate requirements verification. Besides, sometimes developers or
project managers agree to make suggested changes without thinking
carefully through the implications. The change might turn out to be
more complex than anticipated, take longer than promised, be
technically or economically infeasible, or conflict with other
requirements. Every change in requirements will consume resources.
Anyway, managing changing requirements is a process of recognizing
change through continued requirements elicitation, reevaluation of
risk, and evaluation of systems in their operational environment.
Traceability involves providing techniques and tools for controlling the
impact of changes in different parts of the project. Typical changes in
requirements specifications include adding or deleting requirements.
The process for dealing with requirements changes, as the
environments that support this process, is considered mandatory
because it helps to scope the possible impact of changes.

Often, users claim to be too busy to spend the time it takes to iteratively
gather and refine the requirements. Although researchers have noted
the importance of communication among stakeholders, they continue
studying distributed requirements elicitation. Some approaches may

121
A Classification framework for Software Requirements Prioritization Approaches

help to minimize the impact of these problems. One of them, the CSCW
(Computer-Supported Cooperative Work), is the area that takes into
account human behavior as well as the technical support that people
may need to work as a group in a more productive way. GroupWare is
the software used for communication and collaboration in workgroups.
Many organizations have adopted a decentralized, team-based,
distributed structure, whose members communicate and coordinate
their work through information technology. Groupware tools now
permit powerful means of communication, allowing groups to develop
distributed software engineering activities. As the groups are several
and heterogeneous, the process which support distributed stakeholders
are highly desirable since it is common that participants involved in a
software development project must elicit requirements in a scene where
stakeholders are geographically distributed. Thus, the managing of the
distance between members of a development group is an important
issue added to the requirements elicitation process.

Is our intention that the prioritization process be supported by
computational tools; the argument for that is that sometimes this
feature avoids paralyzing the process (or making the process not too
heavy). If requirements development seems to go on forever, you might
be a victim of analysis paralysis. In the context of software
development, computer lays a particularly important role. Theoretical
computer science provides the framework to assess the feasibility of
requirements, while practical computer science provides the tools by
which software solutions are developed. Since software is a formal
description, analysis of its behavior is amenable to formal reasoning. A
system will change the activities that it supports.

The process must be proved in real projects (experience). At least this is
a desirable item since many processes are good theoretically but they
are practically impossible to be implemented.

In a scene where stakeholders are geographically distributed, considering
the characteristics of interpersonal communication and the virtual area
where it is carried out, the importance of applying interdisciplinary
approaches, such as Cognitive Engineering, is currently increasing.

The cognitive aspects cover the evaluation of cognitive features as
participation in negotiation among stakeholders during the whole
process and not the cognitive techniques for knowledge acquisition of
knowledge based system. The “evaluation” studies what personal
characteristics serve to establish priorities weights. The participation of
the groups includes defining how priorities occurred (subjective or
objective) as the necessary personal experience and interviews to
ensure the success of the developed method. There three concepts

122 Nadina Martinez Carod, Alejandra Cechich

related with Cognitive Engineering: cognitive psychology, cognitive
techniques and cognitive informatics. The first concept, Cognitive
psychology, provides an understanding of the difficulties people may
have in describing their needs. Cognitive techniques include a series of
techniques originally developed for knowledge acquisition in
knowledge-based systems. Such techniques include protocol analysis
(in which an expert thinks aloud while performing a task, to provide the
observer with insights into the cognitive processes used to perform the
task), laddering (using probes to elicit structure and content of
stakeholder knowledge), card sorting (asking stakeholders to sort cards
in groups, each of which has name of some domain entity), repertory
grids (constructing an attribute matrix for entities, by asking
stakeholders for attributes applicable to entities and values for cells in
each entity). The last concept, cognitive informatics is an approach to
face the problems of a requirements elicitation process. It is a a
profound interdisciplinary research area that tackles the common root
problems of modern informatics, computation, software engineering,
artificial intelligence (AI), neural psychology, and cognitive science.
One of the most interesting things found in cognitive informatics is that
it embodies many science and engineering disciplines, such as
informatics, computing, software engineering, and cognitive sciences,
sharing a common root problem – how the natural intelligence
processes information. Therefore, we consider highly desirable the
evaluation of cognitive aspects to establish priorities weights.

One of the most important goals of elicitation is to find out what
problem needs to be solved, and hence identify system boundaries .
These boundaries define, at a high level, where the final delivered
system will fit into the current operational environment. Identifying
and agreeing a system's boundaries affects all subsequent elicitation
efforts. The identification of stakeholders and user classes, of goals and
tasks, and of scenarios and use cases, all depend on how the boundaries
are chosen and on the human experience of developers and analysts.
Requirements specialists are generally more familiar than other
development staff with recent technology advances and also can help
eliciting real customer needs and expectations based on the stated
requirements. Sometimes the developers have not enough experience,
(or the ones which have enough experience are too expensive for
specific projects). Anyway it would be interesting (nice) to have
methods or processes which imply not experts, or less human
experience.

The software requirements specification serves as a container for both the
functional requirements and the nonfunctional requirements. The latter
include quality attribute goals, performance objectives, business rules,

123
A Classification framework for Software Requirements Prioritization Approaches

design and implementation constraints, and external interface
requirements. It is desirable that the quality attributes, -non functional
requirements-(such as usability, efficiency, portability, and
maintainability) can be elicited from users during the prioritization process.

3.2 Framework Analysis

In Table 5 we can deduce that at least three characteristics considered
fundamental (traceability, distributed stakeholders and cognitive
aspects) are not supported (or are little supported) by the prioritization
methods.

Fig. 2 Sum results of simple features

Then, each feature is assessed by calculating the product between its
assessed value and the specific weight depending of its importance. Figure
2 shows graphically the comparative representation of the sum results by
the classification methods, with respect to Table 5 of simple features.

To simple features, the maximum value that can be assigned to a method
would have the value of 155, obtained by considering the assigned
weights of each feature product as 5 (6+6+3+10+3+3) *5. The simple
features from Table 1 and Table 2, can be analyzed from two viewpoints:
the first one considering the most significant characteristics and the
second according to the sum of their relative weights.

By analyzing the information above, we realize that the method to be
discharged is Psych. S.R., because it does not have any of the mentioned
characteristics. In addition, three levels in this classification could be
defined. In the first level would be AGORA, since it supports M and HD
features, the methods AHP, Cost-Value, Quantitative Win-Win would
be in this level too, since they have M feature and some HD features. In
the following level they would be the methods Win - Win,
Requirements Interdependency and MPARN; and in the third level
would be GSP, Visual Issue and QFD (they do not have characteristics
HD).

124 Nadina Martinez Carod, Alejandra Cechich

Fig. 3. Sum results of compound features

In the case of the compound features, the first analysis is more difficult
to make, since we analyze aggregated features. Therefore we analyze
only the sum of the relative weights values. In general with respect to
these features, all the classification methods have values that defer
much to the optimal ones. If we consider the sum of their relative
weights values and we define ranks for each level we might agree on the
following classification: Level 1 (160 - 100); Level 2 (99 – 66); Level 3
(65 - 38); Level 4 (37 – 0). With this ranking in mind, we find in the
higher level the Win - Win method, then the following level includes the
Quantitative Win-Win, Requirements Interdependence, QFD, MPARN,
and Visualization Issue methods . Finally, at the third level we find
AGORA, AHP and Cost-Value and, at the last level the methods GSP
and Psych.SR, with very low values.

The sum of the values for all the methods, combining Table3 and Table5,
are shown in Table 6.

Table 6. Sum values

With all these graphs and tables in mind we can make a final
comparison. Hence, Figure 4 graphically shows percentages obtained

125A Classification framework for Software Requirements Prioritization Approaches

by all the methods in relation to the maximum possible value, which is
315 and represents the 100% in a graphical representation.

Fig. 4. Methods percentages

Fig. 5 shows the most relevant features of Table 3 and Table 5 (HD)
and (M). As a conclusion, there is a lack of treatment for the following
features: cognitive aspects (14.55%), traceability (27.27%) and
distributed stakeholders (29.09%).

Fig. 5. Most relevant features

4 Conclusion and Future work

In this paper, we focused on cognitive aspects not for knowledge
acquisition, but as participation of stakeholders as main features to be
analyzed on the different approaches to prioritize requirements. The
framework we proposed classifies methods for prioritizing software
requirements. It was used to provide an overview of differences and
similarities among different approaches. We conclude that
requirements prioritization methods, in most cases, do not have
cognitive aspects, they are distributed stakeholders partially supported
and they cannot determine who nor how, prioritized some requirement.

126 Nadina Martinez Carod, Alejandra Cechich

The assignment of cognitive weights to each stakeholder may help assess a
candidate group to be involved in prioritizing a set of requirements.
Therefore, the requirements prioritization process can be adjusted based on
stakeholders' profiles using cognitive aspects of stakeholders. We suggest
improving communication and reduce misunderstandings based on
Cognitive Psychology. Thus, we continue working on the cognitive area.
Our future work will define weighting preference processes and selection
preference processes, which will be supported by automatic tools for
requirements prioritization.

References

[1] Antón A. “Goal Based Requirements Analysis” In Proceedings of
the 2nd International Conference on Requirements Engineering
(ICRE '96) IEEE software April 15 - 18, 1996

[2] Boehm B.W., Grünbacher P., Briggs B. “Developing Groupware
for Requirements Negotiation: Lessons Learned”. IEEE Software,
May/June 2001, pp. 46-55

[3] Chiew V. and Wang Y. “From Cognit ive Psychology to Cognitive
Informatics”. In Proceedings of the Second IEEE International
Conference on Cognitive Informatics (ICCI'03) London, UK,
August 2003, pp 114-120.

[4] Dardenne A., van Lamsweerde A., and Fickas S, 1993. “Goal -
directed Requirements Acquisition”. Science of Computer
Programming Vol. 20, pp. 3 -50.

[5] Dean, Edwin. “Quality Function Deployment for Large Systems.”,
International Engineering Management Conference '92,
Eatontown NJ USA , October 25 -28, 199.

[6] Eberlein. “Requirements Acquisition and Specification for
Telecommunication Services” , PhD Thesis. University of Wales,
Swansea, UK, 1997.

[7] Edwards, W. and Barron, F.H., “SMARTS and SMARTER:
Improved Simple Methods for Multiattribute Utility
Measurement”, Organizational Behavior and Human Decision
Processes 60, 1994, pp. 306-325.

[8] Giesen J., Völker A., “Requirements Interdependencies and
Stakeholders Preferences”, IEEE Joint International Conference on
Requirements Engineering (RE'02). September 2002. pp 206 -212

[9] Goetz R. and Rupp C. “Psychotherapy for System Requirements”.
Proceedings of Second IEEE International Conference on
Cognitive Informatics (ICCI' 03).

127

A Classification framework for Software Requirements Prioritization Approaches

[10] GRL homepage, http://www.cs.toronto.edu/k-m/GRL/

[11] Grüenbacher P. “Collaborative Requirements Negotiation with
ndEasyWinWin” 2 International Workshop on the Requirements

Engineering Process, Greenwich, London IEEE Computer
Society,2000. ISBN 0-7695-0680-1. pp. 954-690.

[12] http://www.sawtooth.com

[13] Hui B., Lisakos S., and Mylopoulos J.. “Requirements Analysis
for Customizable Software: A Goals-Skills -Preferences

th
Framework” . In Proceedings of the 11 IEEE International
Requirements Engineering Conference, p p 117– 126, 2003

[14] I* homepage, http://www.cs.toronto.edu/km/istar

[15] In H. and Roy, S., "Visualization Issues for Software
Requirements Negotiation" , IEEE International Computer
Software and Applications Conference (COMPSAC 2001),
Chicago, Illinois, USA, pp. 10 -15, October 2001.

[16] In H., Olson D., Rodgers T. “A Requirements Negotiation Model
Based on Multi - Criteria Analysis.” Fifth IEEE International
Symposium on Requirements Engineering (RE '01). August 27-
31, 2001. Toronto, Canada. pp 312.

[17] Kaiya H., Horai H., and Saeki M., “AGORA: Attributed Goal -
Oriented Requirements Analysis Method” , In Proceedings of the
IEEE International Conference on Requirements Engineering,
2002, pp. 13-22.

[18] KAOS homepage, http://www.info.ucl.ac.be/research
/projects/AVL/ReqEng.html

[19] Karlsson, J. “Software Requirements Prioritizing”. ICREE p. 110,
ndProceedings of the 2 International Conference on Requirements

Engineering ICRE, April, 1996.

[20] Karlsson, J. and Ryan, K. “A Cost -Value Approach for
Prioritizing Requirements”. IEEE Software, Vol. 14(5): p. 67-74,
September/October 1997.

[21] Kimura D. homepage. http:// www.dhushara.com/book/
socio/kimura/kimura.h tm.

[22] Kitchenham B. DESMET : “A method for evaluating Software
Engineering methods. and tools”. Technical Report TR96 -09,
ISSN:1353-7776, 1996.

[23] Leoucopoulos P. and Karakostas V. “System Requirements
Engineering”, Mc Graw-Hill, 1995

128 Nadina Martinez Carod, Alejandra Cechich

[24] Martín A., Martínez C., Martínez Carod N., Aranda G., and
Cechich A. “Classifying Groupware Tools to Improve
Communication in Geographically Distributed Elicitation”. IX
Congreso Argentino en Ciencias de la Computación, CACIC
2003, La Plata, 6 -10 Octubre 2003, pp. 942-953.

[25] Martinez Carod N. and Cechic A. “Applying Learning Style
Models To Prioritize Conflicting Goals”. (WICC 2004)- May'04.

[26] Martinez Carod, N. and Cechich, A. “Classifying Software
Requirement Prioritization Approaches”. XI Congreso
Argentino en Ciencias de la Computación, CACIC 2005, Entre
Ríos, 6 -10 Octubre 2005.

[27] Reubenstein H.B. and Waters R.C.: “The Requirements
Apprentice: Automated Assistance for Requirements
Acquisition”, IEEE Transactions on Software Engineering.,

[28] Ruhe G., Eberlein A, and Pfahl D. “Quantitative WinWin - A
Quantitative Method for Decision Support in Requirements
Negotiation” Fraunhofer IESE, Germany, 2002, ISERN-02-05.

[29] Rupp C.. “Requirements and Psychology”. IEEE (Software
May/June) pp.16-18

[30] Saaty T.L., 1990. “The Analytic Hierarchy Process” . McGraw-
Hill.

[31] Shi Z., Shi J. “Perspectives On Cognitive Informatics”. In
Proceedings of the Second IEEE International Conference on
Cognitive Informatics. (ICCI´03), p p . 129-137, 2003.

[32] Soloman B and Felder R. homepage, http://www.engr.ncsu.edu/
learningstyles/ ilsweb.html

[33] Thomas P., Oliveros A. “Elicitación de Objetivos, un estudio
comparativo”. IX Congreso Argentino en Ciencias de la
Computación, CACIC 2003, La Plata, 6-10 Octubre 2003, p p.
990-1002.

[34] Wang Y. “Cognitive Informatics: A New Transdisciplinary
Reseearch Field”. (2003)

[35] Wang Y. “On Cognitive Informatics”. In Proceedings of the First
IEEE InternationalConference on Cognitive Informatics.
(ICCI´02), Calgary, Alberta, Canada, August 2002, pp 34-42

[36] Young R.. “Recommended Requirements Gathering Practices”.
CroossTalk The Journal of Defense Software Engineering. April
2002. pp. 9 -12

129
A Classification framework for Software Requirements Prioritization Approaches

