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Abstract. The accelerated development of applications related to artificial intelligence has generated 

the creation of increasingly complex neural network models with enormous amounts of parameters, 

currently reaching up to trillions of parameters. Therefore, it makes your training almost impossible 

without the parallelization of training. Parallelism applied with different approaches is the mechanism 

that has been used to solve the problem of training on a large scale. This paper presents a glimpse of 

the state of the art related to parallelism in deep learning training from multiple points of view.  The 

topics of pipeline parallelism, hybrid parallelism, mixture-of-experts and auto-parallelism are addressed 

in this study, which currently play a leading role in scientific research related to this area. Finally, we 

develop a series of experiments with data parallelism and model parallelism. The objective is that the 

reader can observe the performance of two types of parallelism and understand more clearly the 

approach of each one. 
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1   Introduction 

Deep learning has shown great potential to solve complex problems in several areas, such as computer 

vision, natural language processing, and speech recognition (Hey, 2020). For this reason, the scientific 

community has implemented artificial intelligence approaches with great acceptance in many areas of 

science and engineering (Stevens, et al., 2020). However, as deep learning models have become larger and 

more complex, the training time required to obtain accurate results has increased significantly. To address 

this challenge and speed up the training process, parallelism techniques have been implemented and 

combined in the field of deep learning (DL) (Chen, M, 2023). 

The goal of this paper is to provide an overview of the various parallelism techniques used in training 

DL (Ben-Nun & Hoefler, 2019; Verbraeken, et al., 2020). The current overview of the most important 

issues related to parallelism in deep learning is presented, including parallelism paradigms, techniques or 

approaches, optimizations and deep learning frameworks. Also, important concepts are described to support 

the theoretical basis of artificial neural networks and how they have evolved to reach the most advanced 

deep learning models used today. 

This study focuses on the two main types of parallelism: data parallelism and model parallelism. Data 

parallelism executes the same task on multiple distributed nodes with a different data set and model 

parallelism changes the approach by partitioning the neural network model and distributing it across 

multiple accelerators (Rojas, Quirós-Corella, Jones, & Meneses, 2022). In addition, research related to 

various parallelism techniques and optimizations is described, such as pipeline parallelism that divides the 

training of deep learning models into stages and processes them in parallel, hybrid parallelism that takes 

advantage of the combination of several parallelism approaches (DP and MP) to speed up training, and 

mixture of experts (MoE) that uses multiple expert models to optimize training performance and learning. 

As an additional element, a brief description of the state of the research related to fault tolerance in parallel 

DL training is made. 

Finally, through the execution of a series of experiments, a comparison of the training of DL models 

using two parallelism approaches is presented. The results obtained are analyzed and compared, in order to 

provide the reader with an experimental vision of the main approaches. 
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2   Important Topics in Deep Learning Parallelism 

2.1   Artificial Neural Network and Deep Learning 

Inspired by biological neural networks. Artificial Neural Network (ANN) are massively parallel computing 

systems consisting of an extremely large number of simple processors with many interconnections. All of 

these interconnections have a value, commonly called weight, that is adjusted to allow for learning. Some 

ANN architectures also have weighted connections not only from one layer to the next, but also to one or 

more layers below (Hopfield, 1988; Pouyanfar, et al., 2018). An ANN consists of an input layer of neurons 

(or nodes, units), one or two (or even more) hidden layers of neurons, and a final layer of output neurons 

and must be configured in such a way that the application of a set of inputs produces the desired set of 

outputs (Wang, 2003). 

Deep learning algorithms are also a subset of ANNs when the use of multilayer structures (hidden layers) 

is preferred, since they can handle more than one problem at the same time to give a unique answer 

(Kukačka, Golkov, & Cremers, 2017). Deep learning uses multiple layers to represent data abstractions to 

build computational models. Deep learning algorithms are mainly based on the well-known Deep Neural 

Networks (DNN) or also called Convolutional Neural Networks (CNN) (Wu, 2017). 

CNN is one of the largest networks in the field of deep learning. They are analogous to traditional ANNs 

in that they are composed of neurons that selfoptimize through learning. The only notable difference 

between CNNs and traditional ANNs is that CNNs are mainly used in the field of pattern recognition within 

images (Albawi, Mohammed, & Al-Zawi, 2017; Li, Liu, Yang, Peng, & Zhou, 2022). 

 

Figure 1. Deep Learning Parallelism 

DL Frameworks DL uses multiple layers to represent the abstractions of data to build computational 

models. Different DL algorithms help to improve the learning performance, broaden the scopes of 

applications, and simplify the calculation process. DL frameworks (Abadi, et al., 2016; Batur Dinler, Şahin, 

& Abualigah, 2021; Chen, et al., 2015; Collobert, Bengio, & Mariéthoz, 2002; Jia, et al., 2014; Manaswi, 

2018; Ravanelli, Parcollet, & Bengio, 2019) combine the implementation of modularized algorithms, 

optimization techniques, distribution techniques, and support to infrastructures (Pouyanfar, et al., 2018). In 

conclusion, the purpose of the DL Frameworks is to help developers and researchers to easily take 

advantage of the technologies (Mittal & Vaishay, 2019). 

2.2   Parallelism Paradigms 

Currently the components of high performance computing systems are dedicated to supporting parallelism. 

Neural network algorithms have been adapted for better use in parallelism paradigms. There are two main 

approaches to train deep neural network models in a distributed manner: data and model parallelism. The 

figure 1 shows in a general way the operation and relationship that exists between the 3 main DL paradigms 

that exist. 
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Data Parallel Data parallelism is usually expressed as a single thread of control operating on data sets 

distributed over all nodes (Subhlok, Stichnoth, O'Hallaron, & Gross, 1993). Data parallelism divides the 

data set into partitions whose number is equal to the number of accelerators (GPUs, TPUs). According to 

the gradient update strategy, data parallelism can be divided into two categories, synchronous parallelism 

and asynchronous parallelism. In synchronous parallelism, the training rate is limited by the slowest 

accelerator because the parameter server needs to collect parameters from all accelerators each round. 

Asynchronous parallelism reduces the timeout of accelerators with an asynchronous gradient update 

strategy (Zhang, Lee, & Qiao, 2023). 

In another study (Gholami, Azad, Jin, Keutzer, & Buluc, 2018), it is described other types of parallelism 

that are framed within DP and are related to the training input data: batch parallelism y domain parallelism. 

The first is related to the assignment of groups of input data as a whole to the processes that are executed 

(this is the option commonly studied in the literature). The second is based on the subdivision of individual 

input data to processes. 

Model Parallel Model parallelism partitions a model among multiple GPUs. Each GPU is responsible 

for the weight updates of the assigned model layers (Krizhevsky, 2014; Mirhoseini, et al., 2017). This 

scheme is used when the model is too large to fit in the memory of a single device, and hence data 

parallelism cannot be used. The model to train is partitioned and every device trains its own portion of the 

model using the same batch of examples (Harlap, et al., 2018; Moreno-Alvarez, Haut, Paoletti, & Rico-

Gallego, 2021). 

According to Janbi, Katib and Mehmood (2023), Jiang et al. (2020), Kirby et al. (2020), and Shoeybi et 

al. (2020) there are several strategies for model partitioning, i.e., how a neural network model is divided 

into smaller parts for distributed processing across multiple devices. The most common strategy is (1) layer-

wise, the model is partitioned by layers, assigning each layer to a different device. For example, in Jia, Lin 

and Aiken (2018) a layer-wise parallelism is proposed that allows each layer in the network to use an 

individual parallelization strategy. (2) fine-grained, the model is partitioned into smaller blocks, which 
allows more granularity in the distribution. This strategy can be subdivided into (2.1) grid-based, the model 

is divided into a matrix, distributing different sections of the model to separate devices. (2.2) tree-structured, 

the model is decomposed into a tree structure, where each node in the tree is assigned to a device, allowing 

a high degree of parallelism and efficient communication between neighboring nodes in the tree, in Wang 

et al. (2023) propose a system to accelerate communication and computation on multi GPU platforms. 

It is necessary to mention the work carried out by Che, Yang and Cheng (2019), where a comparison is 

made between data parallel and model parallel. This work focuses on three aspects: inter-GPU load 

balancing, inter-GPU communication, and training efficiency. In the first aspect, with data parallelism, load 

balancing can be easily maintained, but with model parallelism it is more complex, by dividing the 

complexity into different layers. In the second aspect, both data parallelism and model parallelism require 

communications between the GPUs and according to Takisawa, Yazaki, and Ishihata (2020) due to the 

communication time between the nodes, the learning performance can degrade and overload the training. 

Finally, in the third aspect, both data parallelism and model parallelism affect the efficiency of DNN 

training, that is, the rate of convergence and the accuracy of the model. 

3   Parallelism techniques and optimizations 

3.1   Pipeline Parallelism 

Pipeline parallelism (PP) improves the efficiency of both memory consumption and computation of deep 

learning training by partitioning the layers of a model into stages that can be processed in parallel. With 

this technique it is possible to train large neural network models that do not fit into the memory of an 

accelerator. In a pipeline parallelism, each piece of data moves from stage to stage, eventually producing a 

final result (Harlap, et al., 2018; Huang, et al., 2019; Mastoras & Gross, 2018; Narayanan, et al., 2019; 

Yang P. , Zhang, Zhang, Yang, & Wei, 2022). PP takes advantage of a pipelined execution strategy across 

different accelerators. With the pipeline execution strategy, PP can get better performance by using 

accelerators more efficiently compared to the naive parallelism model (Hu, et al., 2021; Zhang, Lee, & 

Qiao, 2023). Several authors have indicated the challenge that exists between load balancing and the 
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communication overhead in PP. In Kamruzzaman, Swanson, and Tullsen (2013) is explained a technique 

used to balance both situations. This technique provides linear speedup for several applications and 

outperforms prior techniques to exploit pipeline parallelism. 

Table 1.  Pipeline libraries.  

Library Description References 

DeepSpeed Library for training large models by improving 

scale, speed, cost and usability, unlocking the 

ability to train 100 billion parameter models. 

(Aminabadi, et al., 2022; Li, et al., 

2024; Rajbhandari, et al., 2022; Rasley, 

Rajbhandari, Ruwase, & He, 2020) 

GPipe Optimization of pipeline parallelism training 

process. GPipe applies synchronous backward 

updates, and has been integrated into the 

PyTorch framework. 

(Huang, et al., 2019; Tanaka, Taura, 

Hanawa, & Torisawa, 2021; Zhang, 

Lee, & Qiao, 2023) 

PipeDream Supports pipelined training, and automatically 

determines how to systematically split a given 

model across the available compute nodes 

(Harlap, et al., 2018; Narayanan, et al., 

2019; Zhang, Lee, & Qiao, 2023) 

Other pipeline libraries: EdgePipe (Hu, et al., 2021; Yoon, Byeon, Kim, & Lee, 2022; Yuan, et al., 

2023), BaPipe (Akintoye, Han, Zhang, Chen, & Zhang, 2022; Zhao, et al., BaPipe: Exploration of 

Balanced Pipeline Parallelism for DNN Training, 2021; Zhao, et al., BaPipe: Balanced Pipeline 

Parallelism for DNN Training, 2022), XPipe (Guan, Yin, Li, & Lu, 2020), 

vPipe (Zhao, et al., 2022; Zhao, et al., 2022; Zhu, 2023), , PipeMare (Yang, et al., 2021), Chimera (Li & 

Hoefler, 2021), TeraPipe (Li, et al., 2021), HetPipe (Park, et al., 2020), 

PipeTransformer (He, Li, Soltanolkotabi, & Avestimehr, 2021; Miao, et al., 2022), AutoPipe (Liu, et 

al., 2022; Zhang, et al., 2023), Quantpipe (Wang, et al., 2023), PipePar (Zhang, et al., 2023) 

 

Shows a summary of some of the main pipeline libraries that exist. The most important libraries are briefly 

described and other libraries of interest are included at the end of the table. 

3.2   Hybrid Parallelism 

The need to reduce the overhead of training large neural networks opened the possibility to implement 

approaches that involve more than one type of parallelism. Hybrid parallelism (HP) is one of the most 

recognized approaches today and that, due to the combination of strategies, is used to solve increasingly 

complex problems and with enormous volumes of computing. The HP is the combination of data 

parallelism and model parallelism (Howison, Bethel, & Childs, 2012). Current scientific work based on DL 

often requires training models with large dimensions which can make training much more expensive due 

to excessive memory usage (Oyama, et al., 2021). 

Research to implement hybrid parallelism schemes to increase performance shows important advances. 

One of these advances is the combination of intralayer and interlayer parallelism to perform distributed 

training of DNN (Akintoye, Han, Zhang, Chen, & Zhang, 2022; Camp, Garth, Childs, Pugmire, & Joy, 

2011; Oyama, et al., 2021; Song, et al., 2019; Zeng, Liu, Tang, Chang, & Li, 2021). These are investigations 

that describe optimizations on the parallel training of the models, demonstrating that despite the large 

volumes of data, memory costs can be improved. One of the reasons why it is necessary to optimize training 

is to be able to balance the memory capacity of the GPUs. This memory is limited by the number of 

computational operations required, which can result in excessively long training times (Narayanan, et al., 

2021). Other investigations related to HP (Fan, et al., 2021; Li, S., et al., 2023) refer to optimization in 

processing times and synchronous frameworks that combine DP and Pipeline for large DNN models. 

Recent research has focused on Hybrid Synchronous Parallelism (HSP), which alleviates communication 

contention without excessive speed degradation by removing network congestion and synchronizing all 

updated parameters after each iteration (Li, Mangoubi, Xu, & Guo, 2021; Li, Y., et al., 2023). In other 

investigations (Duan, et al., 2022; Liu, Chen, Zhou, & Ling, 2020; Song, et al., 2019; Zhou, et al., 2021) 

use heterogeneous Clustered HSPs (HPH) with the purpose of improving training by reducing 

communication time between layers and optimizing memory consumption. 
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3.3   Auto-parallelism 

Auto-parallelism (AP) is a parallelization strategy that proposes to train DL models on a large scale in an 

efficient and practical way in several heterogeneous clusters, thus promoting an improvement in 

performance and memory consumption (Zheng, et al., 2022). Most efforts to improve model training have 

been manual. AP contributes to parallelization by developing strategies that provide improvements in the 

automatic conversion of sequential code into multithreaded or vectorized code to make use of available 

hardware devices (Liang, et al., 2023). One of these proposed models is Rhino (Zhang, et al., 2023) which 

is a tensor program acceleration system with AP on an Artificial Intelligence (AI) platform. Rhino 

efficiently searches for a parallel execution plan to speed up performance and communication within 

processing clusters. With AP many researchers try to avoid training algorithms that are not so highly 

personalized, since they contain many parameters and that these can be applied more generally (Liang, et 

al., 2023). Another proposed algorithm is Frontier Tracking (FT) (Cai, et al., 2022) which minimizes 

memory consumption when the number of devices is limited and uses the additional resources to reduce 

execution time. TensorOpt (Cai, et al., 2022) is based on FT and allows users to run distributed DNN 

training jobs without worrying about the details related to parallelization strategies for searching and 

encoding. Finally, there are also automation algorithms like Galvatron (Miao, et al., 2022) and Alpa (Zheng, 

et al., 2022). Galvatron is an algorithm that incorporates multiple dimensions of parallelism and 

automatically finds the most efficient hybrid parallelism strategy by automatically achieving distributed 

training with different GPU memory budgets. The other algorithm automates MP training of large DL 

models by generating execution plans that unify the DP, operators, and PP. Alpa distributes the training of 

large DL models in two hierarchical levels: inter-operator and intra-operator parallelism. 

3.4   Mixture-of-Experts Parallelism 

Mixture-of-Experts (MoE) models have become one of the most promising model architectures due to their 

significant reduction in training cost and improved performance compared to equivalent dense models. 

However, it presents a challenge due to the size of the models and the complex architecture (Rajbhandari, 
et al., 2022). MoE is an approach that has strong potential for training neural networks with up to trillions 

of parameters. A MoE layer contains many experts that share the same architecture and are trained by the 

same algorithm with a routing function that routes inputs to a few experts among all possible candidates 

(Chen, Deng, Wu, Gu, & Li, 2022). The huge number of parameters of current neural networks means that 

MoE is closely related to optimization and performance. Studies like Chen et al. (2022), Dai et al. (2022), 

Li, Jiang, Zhu, Wang, and Xu (2023), and Ma et al. (2018) focus on the optimization of different elements 

related to MoE. In Chen et al. (2022) a method for the progressive reduction of experts is proposed. The 

authors propose to progressively remove non-professional experts to reduce a MoE model to a single-expert 

dense model. 

Other authors optimize based on the tasks that run the parallel application. In Ma et al. (2018) they adapt 

the MoE and propose a multi-task learning approach called MMoE (Multi-gate Mixture-of-Experts) to 

explicitly learn model relationships from data. So, they seek to build a single model that learns from 

multiple goals and tasks simultaneously. Other research (Dai, et al., 2022; Li, Jiang, Zhu, Wang, & Xu, 

2023; Nie, et al., 2022) focuses on training. In the first work the authors divide the training in two stages to 

solve routing fluctuation problems with the implementation of StableMoE, in the second work they propose 

new communication scheduling schemes based on tensor partitioning and finally in Nie et al. (2022) an 

end-to-end MoE training framework called EvoMoE is proposed. This framework starts from training one 

single expert and gradually evolves into a large and sparse MoE structure. Furthermore, it is composed of 

two phases called expert-diversify phase and gate-sparsify phase.  Regarding the need to increase 

performance, there are studies that modify the routing algorithms of MoE (Fedus, Zoph, & Shazeer, 2022; 

Riquelme, et al., 2024) or use up to a thousand feed-fordward subnetworks contained in a layer (Sparsely-

Gated Mixture-of-Experts layer) to determine a sparse combination of experts (Hazimeh, et al., 2024; 

Shazeer, et al., 2017). 

Not only have new algorithms or optimization techniques been developed to increase performance. A 

large number of libraries and frameworks have also been proposed such as FastMoE (He, et al., 2021), 

DynaMoE (Kossmann, Jia, & Aiken, 2022), DSelect-k (Harlap, et al., 2018), and Tutel (Hwang, et al., 

2023), which are designed to solve specific problems that can influence performance and scalability. The 

FastMoE and Tutel libraries are more focused on the parallelism of the trainings. In the case of FastMoE, 
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it presents a distributed MoE training system for PyTorch with common accelerators and not relying on 

TPUs (Tensor Processing Units). On the other hand, Tutel is termed as a scalable stack for MoE. Tutel was 

designed to implement dynamic adaptive parallelism and pipelining without mathematical inequivalence 

or tensor migration overhead. 

Table 2. Hardware configuration 

Item Description 

System name ThetaGPU 

Number of nodes 24 

Number of CPU per node 2 

CPU ADM Rome 

Number of CPU cores 64 

Number of GPU per node 8 

GPU NVIDIA DGX A100 

 

Table 3. Parallelism types performance: DDP and GPipe 

#GPU Data parallel /DDP 

Accuracy      Time (sec)      STD 

Model parallel / GPipe 

Accuracy      Time (sec)    STD 

2   69.856             256.83         1.041   67.25              1169.12     0.412 

4   69.025             120.24         1.245   66.85                907.39     0.041 

6   70.397               83.01         1.134   67.22              1067.43     0.062 

8   68.146               58.22         0.092 67.71             1148.52     0.106 

4   Assessing the parallelism of DL trainings 

4.1   Experimental methodology 

Hardware configuration: The system used to carry out the experiments is a supercomputer located at the 

Argonne Leadership Computing Facility (ALCF) called ThetaGPU. This system is part of a larger system 

called Theta. We use this system because it has the necessary GPUs to carry out the experiments presented 

in this study. Table 2 shows the characteristics of the high-performance computing system used in this 

study.  

Methodology: In order to test some characteristics of the parallelism types, we decided to implement 

distributed training with the main types of parallelism in DL. Data parallelism via Horovod and model 

parallelism with the GPipe library. Both types of parallelism are implemented using the DL Pytorch 

framework. 

It is important to clarify that the two types of parallelism have different characteristics. Model parallelism 

is used with neural network models that do not fit in the memory of an accelerator (GPU), since it is capable 

of training a neural network by dividing it into multiple partitions according to the number of GPUs 

available. In the following experiments, a small neural network (compared to trillion-parameter neural 

networks) is used with the sole intention of experimentally visualizing the differences between types of 

parallelism and laying the foundation for future studies. 

All the experiments carried out used CIFAR100 as dataset and the ResNet18 neural network. This neural 

network is a reduced version of ResNet, which allows us to evaluate types of parallelism quickly, due to 

reasonable training times. In the case of training with model parallelism, the neural network used is 

transformed to a sequential structure so that it can be correctly computed. Additionally, pipeline parallelism 

is implemented by dividing batches into micro-batches to make the GPUs work in parallel as much as 

possible.  

The results shown are generated by running 10 epochs. 10 repetitions of each experiment were carried 

out in order to obtain statistically acceptable results. Tables 3 and 4 show the results of these experiments. 

Table 3 shows the results of 32-bit training and table 4 shows the results of 16-bit training. To implement 

16 bit training we use the NVIDIA APEX library activating the O3 mode (FP16). 
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Table 4. Parallelism with 16-bit floating-point precision 

#GPU Data parallel /DDP 

Accuracy      Time (sec)     STD 

Model parallel / GPipe 

Accuracy      Time (sec)    STD 

2   69.856             256.83        1.041   67.25              1169.12     0.412 

4   69.025             120.24        1.245   66.85                907.39     0.041 

6   70.397               83.01        1.134   67.22              1067.43     0.062 

8   68.146               58.22        0.092 67.71             1148.52     0.106 

4.2   Results analysis 

The first experiment allows us to compare the performance of the two types of parallelism. Experiments 

were run on 2, 4, 6, and 8 GPUs. In the case of model parallel training we use an automatic layer distribution 

by time. This distribution traces the elapsed time of each layer to determine how many layers to allocate 

per GPU. 

Both table 3 and table 4 show execution times of trainings. However, if we look only at the results of 

table 3 we can make some important observations: 1) The accuracy generated by the two types of 

parallelism is similar. This shows us that despite the fact that model parallelism is oriented to the training 

of large neural networks, the results are acceptable and comparable with those of data parallelism. 2) In the 

previous premise the accuracy is similar. However, the execution times are very different between both 

types of parallelism. The performance difference when comparing the time of 8 GPUs is noticeable. Data 

parallel shows a time of 58.22 seconds while model parallel reports a time of 1148.52 seconds. Clearly 

model parallel performance is degraded by data waiting between GPUs. Even though portions of the neural 

network run on different GPUs, the neural network is still a sequence of layers that must be respected. 3) 

Data parallel performance increases when scaling on GPUs. This is very different from model parallel 

where the time with 2 GPUs is similar to the time with 8 GPUs. It is interesting how with more GPUs a 

higher overhead is generated because the neural network is even more partitioned. With 2 GPUs the 

processing is slower, but there is less waiting for the GPUs. 

Regarding the results of the table 4 we can highlight two important aspects: First, for both data parallel 

and model parallel there is a slight degradation of accuracy. This is generated by the reduction in training 

accuracy. Second, the results are similar to 32-bit training, taking into account the aforementioned aspects 

regarding the results of the table 3. 

5   Concluding Remarks 

Neural networks are gaining more and more popularity due to their great power to help solve complex 

problems in many fields of science. In parallel, the complexity of neural network models increases along 

with the hardware requirements. Due to how difficult and expensive the hardware is, many strategies have 

been developed to parallelize the processes involved in training neural networks. 

In this study we tried to cover the most important concepts together with a large amount of research 

carried out in the field. The main types of parallelism (data and model parallelism) and the variants that 

exist, such as pipeline parallelism or hybrid parallelism, were taken into account. In addition, the topic of 

Mixture of Experts was addressed, which is relatively new in the field of deep learning. In this work, 

experimentation with the two main types of parallelism was presented and the result allowed us to contrast 

in a general and brief way some differences that exist between these types. Finally, it is clear that in this 

work it is not possible to cover all the research and developments that exist related to parallelism in DL. 

However, readers will be able to generate a very clear idea of the current panorama and the complexity that 

surrounds this field. 
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