
Revista Colombiana de Computación
Vol. 25, No. 1. January – June 2024, pp. 60-73
e-ISSN: 2539-2115, https://doi.org/10.29375/25392115.5054
Selected paper previously presented at the Latin America High Performance
Computing Conference (CARLA 2023), an event held in Cartagena de Indias,
Colombia, September 18-22, 2023.

©2024 Universidad Autónoma de Bucaramanga - UNAB. This article is an open access article distributed under the

terms and conditions of the Creative Commons Attribution (CC BY-NC-SA 4.0) license
(https://creativecommons.org/licenses/by-nc-sa/4.0/).

A Snapshot of Parallelism in Distributed Deep Learning

Training

Hairol Romero-Sandí1 , Gabriel Núñez1 , Elvis Rojas1,2

1 Universidad Nacional, Pérez Zeledón, Costa Rica,
2 National High Technology Center, San José, Costa Rica

hromero@una.ac.cr, jgabrielnm@una.ac.cr, erojas@una.ac.cr

(Received: 6 February 2024; accepted: 18 June 2024, Published online: 30 June 2024)

Abstract. The accelerated development of applications related to artificial intelligence has generated

the creation of increasingly complex neural network models with enormous amounts of parameters,

currently reaching up to trillions of parameters. Therefore, it makes your training almost impossible

without the parallelization of training. Parallelism applied with different approaches is the mechanism

that has been used to solve the problem of training on a large scale. This paper presents a glimpse of

the state of the art related to parallelism in deep learning training from multiple points of view. The

topics of pipeline parallelism, hybrid parallelism, mixture-of-experts and auto-parallelism are addressed

in this study, which currently play a leading role in scientific research related to this area. Finally, we

develop a series of experiments with data parallelism and model parallelism. The objective is that the

reader can observe the performance of two types of parallelism and understand more clearly the

approach of each one.

Keywords: deep learning, parallelism, artificial neural networks.

1 Introduction

Deep learning has shown great potential to solve complex problems in several areas, such as computer

vision, natural language processing, and speech recognition (Hey, 2020). For this reason, the scientific

community has implemented artificial intelligence approaches with great acceptance in many areas of

science and engineering (Stevens, et al., 2020). However, as deep learning models have become larger and

more complex, the training time required to obtain accurate results has increased significantly. To address

this challenge and speed up the training process, parallelism techniques have been implemented and

combined in the field of deep learning (DL) (Chen, M, 2023).

The goal of this paper is to provide an overview of the various parallelism techniques used in training

DL (Ben-Nun & Hoefler, 2019; Verbraeken, et al., 2020). The current overview of the most important

issues related to parallelism in deep learning is presented, including parallelism paradigms, techniques or

approaches, optimizations and deep learning frameworks. Also, important concepts are described to support

the theoretical basis of artificial neural networks and how they have evolved to reach the most advanced

deep learning models used today.

This study focuses on the two main types of parallelism: data parallelism and model parallelism. Data

parallelism executes the same task on multiple distributed nodes with a different data set and model

parallelism changes the approach by partitioning the neural network model and distributing it across

multiple accelerators (Rojas, Quirós-Corella, Jones, & Meneses, 2022). In addition, research related to

various parallelism techniques and optimizations is described, such as pipeline parallelism that divides the

training of deep learning models into stages and processes them in parallel, hybrid parallelism that takes

advantage of the combination of several parallelism approaches (DP and MP) to speed up training, and

mixture of experts (MoE) that uses multiple expert models to optimize training performance and learning.

As an additional element, a brief description of the state of the research related to fault tolerance in parallel

DL training is made.

Finally, through the execution of a series of experiments, a comparison of the training of DL models

using two parallelism approaches is presented. The results obtained are analyzed and compared, in order to

provide the reader with an experimental vision of the main approaches.

mailto:hromero@una.ac.cr

Romero-Sandí, Núñez y Rojas/Revista Colombiana de Computación, 2024, Vol. 25, No. 1, pp. 60-73

61

2 Important Topics in Deep Learning Parallelism

2.1 Artificial Neural Network and Deep Learning

Inspired by biological neural networks. Artificial Neural Network (ANN) are massively parallel computing

systems consisting of an extremely large number of simple processors with many interconnections. All of

these interconnections have a value, commonly called weight, that is adjusted to allow for learning. Some

ANN architectures also have weighted connections not only from one layer to the next, but also to one or

more layers below (Hopfield, 1988; Pouyanfar, et al., 2018). An ANN consists of an input layer of neurons

(or nodes, units), one or two (or even more) hidden layers of neurons, and a final layer of output neurons

and must be configured in such a way that the application of a set of inputs produces the desired set of

outputs (Wang, 2003).

Deep learning algorithms are also a subset of ANNs when the use of multilayer structures (hidden layers)

is preferred, since they can handle more than one problem at the same time to give a unique answer

(Kukačka, Golkov, & Cremers, 2017). Deep learning uses multiple layers to represent data abstractions to

build computational models. Deep learning algorithms are mainly based on the well-known Deep Neural

Networks (DNN) or also called Convolutional Neural Networks (CNN) (Wu, 2017).

CNN is one of the largest networks in the field of deep learning. They are analogous to traditional ANNs

in that they are composed of neurons that selfoptimize through learning. The only notable difference

between CNNs and traditional ANNs is that CNNs are mainly used in the field of pattern recognition within

images (Albawi, Mohammed, & Al-Zawi, 2017; Li, Liu, Yang, Peng, & Zhou, 2022).

Figure 1. Deep Learning Parallelism

DL Frameworks DL uses multiple layers to represent the abstractions of data to build computational

models. Different DL algorithms help to improve the learning performance, broaden the scopes of

applications, and simplify the calculation process. DL frameworks (Abadi, et al., 2016; Batur Dinler, Şahin,

& Abualigah, 2021; Chen, et al., 2015; Collobert, Bengio, & Mariéthoz, 2002; Jia, et al., 2014; Manaswi,

2018; Ravanelli, Parcollet, & Bengio, 2019) combine the implementation of modularized algorithms,

optimization techniques, distribution techniques, and support to infrastructures (Pouyanfar, et al., 2018). In

conclusion, the purpose of the DL Frameworks is to help developers and researchers to easily take

advantage of the technologies (Mittal & Vaishay, 2019).

2.2 Parallelism Paradigms

Currently the components of high performance computing systems are dedicated to supporting parallelism.

Neural network algorithms have been adapted for better use in parallelism paradigms. There are two main

approaches to train deep neural network models in a distributed manner: data and model parallelism. The

figure 1 shows in a general way the operation and relationship that exists between the 3 main DL paradigms

that exist.

Romero-Sandí, Núñez y Rojas/Revista Colombiana de Computación, 2024, Vol. 25, No. 1, pp. 60-73

62

Data Parallel Data parallelism is usually expressed as a single thread of control operating on data sets

distributed over all nodes (Subhlok, Stichnoth, O'Hallaron, & Gross, 1993). Data parallelism divides the

data set into partitions whose number is equal to the number of accelerators (GPUs, TPUs). According to

the gradient update strategy, data parallelism can be divided into two categories, synchronous parallelism

and asynchronous parallelism. In synchronous parallelism, the training rate is limited by the slowest

accelerator because the parameter server needs to collect parameters from all accelerators each round.

Asynchronous parallelism reduces the timeout of accelerators with an asynchronous gradient update

strategy (Zhang, Lee, & Qiao, 2023).

In another study (Gholami, Azad, Jin, Keutzer, & Buluc, 2018), it is described other types of parallelism

that are framed within DP and are related to the training input data: batch parallelism y domain parallelism.

The first is related to the assignment of groups of input data as a whole to the processes that are executed

(this is the option commonly studied in the literature). The second is based on the subdivision of individual

input data to processes.

Model Parallel Model parallelism partitions a model among multiple GPUs. Each GPU is responsible

for the weight updates of the assigned model layers (Krizhevsky, 2014; Mirhoseini, et al., 2017). This

scheme is used when the model is too large to fit in the memory of a single device, and hence data

parallelism cannot be used. The model to train is partitioned and every device trains its own portion of the

model using the same batch of examples (Harlap, et al., 2018; Moreno-Alvarez, Haut, Paoletti, & Rico-

Gallego, 2021).

According to Janbi, Katib and Mehmood (2023), Jiang et al. (2020), Kirby et al. (2020), and Shoeybi et

al. (2020) there are several strategies for model partitioning, i.e., how a neural network model is divided

into smaller parts for distributed processing across multiple devices. The most common strategy is (1) layer-

wise, the model is partitioned by layers, assigning each layer to a different device. For example, in Jia, Lin

and Aiken (2018) a layer-wise parallelism is proposed that allows each layer in the network to use an

individual parallelization strategy. (2) fine-grained, the model is partitioned into smaller blocks, which
allows more granularity in the distribution. This strategy can be subdivided into (2.1) grid-based, the model

is divided into a matrix, distributing different sections of the model to separate devices. (2.2) tree-structured,

the model is decomposed into a tree structure, where each node in the tree is assigned to a device, allowing

a high degree of parallelism and efficient communication between neighboring nodes in the tree, in Wang

et al. (2023) propose a system to accelerate communication and computation on multi GPU platforms.

It is necessary to mention the work carried out by Che, Yang and Cheng (2019), where a comparison is

made between data parallel and model parallel. This work focuses on three aspects: inter-GPU load

balancing, inter-GPU communication, and training efficiency. In the first aspect, with data parallelism, load

balancing can be easily maintained, but with model parallelism it is more complex, by dividing the

complexity into different layers. In the second aspect, both data parallelism and model parallelism require

communications between the GPUs and according to Takisawa, Yazaki, and Ishihata (2020) due to the

communication time between the nodes, the learning performance can degrade and overload the training.

Finally, in the third aspect, both data parallelism and model parallelism affect the efficiency of DNN

training, that is, the rate of convergence and the accuracy of the model.

3 Parallelism techniques and optimizations

3.1 Pipeline Parallelism

Pipeline parallelism (PP) improves the efficiency of both memory consumption and computation of deep

learning training by partitioning the layers of a model into stages that can be processed in parallel. With

this technique it is possible to train large neural network models that do not fit into the memory of an

accelerator. In a pipeline parallelism, each piece of data moves from stage to stage, eventually producing a

final result (Harlap, et al., 2018; Huang, et al., 2019; Mastoras & Gross, 2018; Narayanan, et al., 2019;

Yang P. , Zhang, Zhang, Yang, & Wei, 2022). PP takes advantage of a pipelined execution strategy across

different accelerators. With the pipeline execution strategy, PP can get better performance by using

accelerators more efficiently compared to the naive parallelism model (Hu, et al., 2021; Zhang, Lee, &

Qiao, 2023). Several authors have indicated the challenge that exists between load balancing and the

Romero-Sandí, Núñez y Rojas/Revista Colombiana de Computación, 2024, Vol. 25, No. 1, pp. 60-73

63

communication overhead in PP. In Kamruzzaman, Swanson, and Tullsen (2013) is explained a technique

used to balance both situations. This technique provides linear speedup for several applications and

outperforms prior techniques to exploit pipeline parallelism.

Table 1. Pipeline libraries.

Library Description References

DeepSpeed Library for training large models by improving

scale, speed, cost and usability, unlocking the

ability to train 100 billion parameter models.

(Aminabadi, et al., 2022; Li, et al.,

2024; Rajbhandari, et al., 2022; Rasley,

Rajbhandari, Ruwase, & He, 2020)

GPipe Optimization of pipeline parallelism training

process. GPipe applies synchronous backward

updates, and has been integrated into the

PyTorch framework.

(Huang, et al., 2019; Tanaka, Taura,

Hanawa, & Torisawa, 2021; Zhang,

Lee, & Qiao, 2023)

PipeDream Supports pipelined training, and automatically

determines how to systematically split a given

model across the available compute nodes

(Harlap, et al., 2018; Narayanan, et al.,

2019; Zhang, Lee, & Qiao, 2023)

Other pipeline libraries: EdgePipe (Hu, et al., 2021; Yoon, Byeon, Kim, & Lee, 2022; Yuan, et al.,

2023), BaPipe (Akintoye, Han, Zhang, Chen, & Zhang, 2022; Zhao, et al., BaPipe: Exploration of

Balanced Pipeline Parallelism for DNN Training, 2021; Zhao, et al., BaPipe: Balanced Pipeline

Parallelism for DNN Training, 2022), XPipe (Guan, Yin, Li, & Lu, 2020),

vPipe (Zhao, et al., 2022; Zhao, et al., 2022; Zhu, 2023), , PipeMare (Yang, et al., 2021), Chimera (Li &

Hoefler, 2021), TeraPipe (Li, et al., 2021), HetPipe (Park, et al., 2020),

PipeTransformer (He, Li, Soltanolkotabi, & Avestimehr, 2021; Miao, et al., 2022), AutoPipe (Liu, et

al., 2022; Zhang, et al., 2023), Quantpipe (Wang, et al., 2023), PipePar (Zhang, et al., 2023)

Shows a summary of some of the main pipeline libraries that exist. The most important libraries are briefly

described and other libraries of interest are included at the end of the table.

3.2 Hybrid Parallelism

The need to reduce the overhead of training large neural networks opened the possibility to implement

approaches that involve more than one type of parallelism. Hybrid parallelism (HP) is one of the most

recognized approaches today and that, due to the combination of strategies, is used to solve increasingly

complex problems and with enormous volumes of computing. The HP is the combination of data

parallelism and model parallelism (Howison, Bethel, & Childs, 2012). Current scientific work based on DL

often requires training models with large dimensions which can make training much more expensive due

to excessive memory usage (Oyama, et al., 2021).

Research to implement hybrid parallelism schemes to increase performance shows important advances.

One of these advances is the combination of intralayer and interlayer parallelism to perform distributed

training of DNN (Akintoye, Han, Zhang, Chen, & Zhang, 2022; Camp, Garth, Childs, Pugmire, & Joy,

2011; Oyama, et al., 2021; Song, et al., 2019; Zeng, Liu, Tang, Chang, & Li, 2021). These are investigations

that describe optimizations on the parallel training of the models, demonstrating that despite the large

volumes of data, memory costs can be improved. One of the reasons why it is necessary to optimize training

is to be able to balance the memory capacity of the GPUs. This memory is limited by the number of

computational operations required, which can result in excessively long training times (Narayanan, et al.,

2021). Other investigations related to HP (Fan, et al., 2021; Li, S., et al., 2023) refer to optimization in

processing times and synchronous frameworks that combine DP and Pipeline for large DNN models.

Recent research has focused on Hybrid Synchronous Parallelism (HSP), which alleviates communication

contention without excessive speed degradation by removing network congestion and synchronizing all

updated parameters after each iteration (Li, Mangoubi, Xu, & Guo, 2021; Li, Y., et al., 2023). In other

investigations (Duan, et al., 2022; Liu, Chen, Zhou, & Ling, 2020; Song, et al., 2019; Zhou, et al., 2021)

use heterogeneous Clustered HSPs (HPH) with the purpose of improving training by reducing

communication time between layers and optimizing memory consumption.

Romero-Sandí, Núñez y Rojas/Revista Colombiana de Computación, 2024, Vol. 25, No. 1, pp. 60-73

64

3.3 Auto-parallelism

Auto-parallelism (AP) is a parallelization strategy that proposes to train DL models on a large scale in an

efficient and practical way in several heterogeneous clusters, thus promoting an improvement in

performance and memory consumption (Zheng, et al., 2022). Most efforts to improve model training have

been manual. AP contributes to parallelization by developing strategies that provide improvements in the

automatic conversion of sequential code into multithreaded or vectorized code to make use of available

hardware devices (Liang, et al., 2023). One of these proposed models is Rhino (Zhang, et al., 2023) which

is a tensor program acceleration system with AP on an Artificial Intelligence (AI) platform. Rhino

efficiently searches for a parallel execution plan to speed up performance and communication within

processing clusters. With AP many researchers try to avoid training algorithms that are not so highly

personalized, since they contain many parameters and that these can be applied more generally (Liang, et

al., 2023). Another proposed algorithm is Frontier Tracking (FT) (Cai, et al., 2022) which minimizes

memory consumption when the number of devices is limited and uses the additional resources to reduce

execution time. TensorOpt (Cai, et al., 2022) is based on FT and allows users to run distributed DNN

training jobs without worrying about the details related to parallelization strategies for searching and

encoding. Finally, there are also automation algorithms like Galvatron (Miao, et al., 2022) and Alpa (Zheng,

et al., 2022). Galvatron is an algorithm that incorporates multiple dimensions of parallelism and

automatically finds the most efficient hybrid parallelism strategy by automatically achieving distributed

training with different GPU memory budgets. The other algorithm automates MP training of large DL

models by generating execution plans that unify the DP, operators, and PP. Alpa distributes the training of

large DL models in two hierarchical levels: inter-operator and intra-operator parallelism.

3.4 Mixture-of-Experts Parallelism

Mixture-of-Experts (MoE) models have become one of the most promising model architectures due to their

significant reduction in training cost and improved performance compared to equivalent dense models.

However, it presents a challenge due to the size of the models and the complex architecture (Rajbhandari,
et al., 2022). MoE is an approach that has strong potential for training neural networks with up to trillions

of parameters. A MoE layer contains many experts that share the same architecture and are trained by the

same algorithm with a routing function that routes inputs to a few experts among all possible candidates

(Chen, Deng, Wu, Gu, & Li, 2022). The huge number of parameters of current neural networks means that

MoE is closely related to optimization and performance. Studies like Chen et al. (2022), Dai et al. (2022),

Li, Jiang, Zhu, Wang, and Xu (2023), and Ma et al. (2018) focus on the optimization of different elements

related to MoE. In Chen et al. (2022) a method for the progressive reduction of experts is proposed. The

authors propose to progressively remove non-professional experts to reduce a MoE model to a single-expert

dense model.

Other authors optimize based on the tasks that run the parallel application. In Ma et al. (2018) they adapt

the MoE and propose a multi-task learning approach called MMoE (Multi-gate Mixture-of-Experts) to

explicitly learn model relationships from data. So, they seek to build a single model that learns from

multiple goals and tasks simultaneously. Other research (Dai, et al., 2022; Li, Jiang, Zhu, Wang, & Xu,

2023; Nie, et al., 2022) focuses on training. In the first work the authors divide the training in two stages to

solve routing fluctuation problems with the implementation of StableMoE, in the second work they propose

new communication scheduling schemes based on tensor partitioning and finally in Nie et al. (2022) an

end-to-end MoE training framework called EvoMoE is proposed. This framework starts from training one

single expert and gradually evolves into a large and sparse MoE structure. Furthermore, it is composed of

two phases called expert-diversify phase and gate-sparsify phase. Regarding the need to increase

performance, there are studies that modify the routing algorithms of MoE (Fedus, Zoph, & Shazeer, 2022;

Riquelme, et al., 2024) or use up to a thousand feed-fordward subnetworks contained in a layer (Sparsely-

Gated Mixture-of-Experts layer) to determine a sparse combination of experts (Hazimeh, et al., 2024;

Shazeer, et al., 2017).

Not only have new algorithms or optimization techniques been developed to increase performance. A

large number of libraries and frameworks have also been proposed such as FastMoE (He, et al., 2021),

DynaMoE (Kossmann, Jia, & Aiken, 2022), DSelect-k (Harlap, et al., 2018), and Tutel (Hwang, et al.,

2023), which are designed to solve specific problems that can influence performance and scalability. The

FastMoE and Tutel libraries are more focused on the parallelism of the trainings. In the case of FastMoE,

Romero-Sandí, Núñez y Rojas/Revista Colombiana de Computación, 2024, Vol. 25, No. 1, pp. 60-73

65

it presents a distributed MoE training system for PyTorch with common accelerators and not relying on

TPUs (Tensor Processing Units). On the other hand, Tutel is termed as a scalable stack for MoE. Tutel was

designed to implement dynamic adaptive parallelism and pipelining without mathematical inequivalence

or tensor migration overhead.

Table 2. Hardware configuration

Item Description

System name ThetaGPU

Number of nodes 24

Number of CPU per node 2

CPU ADM Rome

Number of CPU cores 64

Number of GPU per node 8

GPU NVIDIA DGX A100

Table 3. Parallelism types performance: DDP and GPipe

#GPU Data parallel /DDP

Accuracy Time (sec) STD

Model parallel / GPipe

Accuracy Time (sec) STD

2 69.856 256.83 1.041 67.25 1169.12 0.412

4 69.025 120.24 1.245 66.85 907.39 0.041

6 70.397 83.01 1.134 67.22 1067.43 0.062

8 68.146 58.22 0.092 67.71 1148.52 0.106

4 Assessing the parallelism of DL trainings

4.1 Experimental methodology

Hardware configuration: The system used to carry out the experiments is a supercomputer located at the

Argonne Leadership Computing Facility (ALCF) called ThetaGPU. This system is part of a larger system

called Theta. We use this system because it has the necessary GPUs to carry out the experiments presented

in this study. Table 2 shows the characteristics of the high-performance computing system used in this

study.

Methodology: In order to test some characteristics of the parallelism types, we decided to implement

distributed training with the main types of parallelism in DL. Data parallelism via Horovod and model

parallelism with the GPipe library. Both types of parallelism are implemented using the DL Pytorch

framework.

It is important to clarify that the two types of parallelism have different characteristics. Model parallelism

is used with neural network models that do not fit in the memory of an accelerator (GPU), since it is capable

of training a neural network by dividing it into multiple partitions according to the number of GPUs

available. In the following experiments, a small neural network (compared to trillion-parameter neural

networks) is used with the sole intention of experimentally visualizing the differences between types of

parallelism and laying the foundation for future studies.

All the experiments carried out used CIFAR100 as dataset and the ResNet18 neural network. This neural

network is a reduced version of ResNet, which allows us to evaluate types of parallelism quickly, due to

reasonable training times. In the case of training with model parallelism, the neural network used is

transformed to a sequential structure so that it can be correctly computed. Additionally, pipeline parallelism

is implemented by dividing batches into micro-batches to make the GPUs work in parallel as much as

possible.

The results shown are generated by running 10 epochs. 10 repetitions of each experiment were carried

out in order to obtain statistically acceptable results. Tables 3 and 4 show the results of these experiments.

Table 3 shows the results of 32-bit training and table 4 shows the results of 16-bit training. To implement

16 bit training we use the NVIDIA APEX library activating the O3 mode (FP16).

Romero-Sandí, Núñez y Rojas/Revista Colombiana de Computación, 2024, Vol. 25, No. 1, pp. 60-73

66

Table 4. Parallelism with 16-bit floating-point precision

#GPU Data parallel /DDP

Accuracy Time (sec) STD

Model parallel / GPipe

Accuracy Time (sec) STD

2 69.856 256.83 1.041 67.25 1169.12 0.412

4 69.025 120.24 1.245 66.85 907.39 0.041

6 70.397 83.01 1.134 67.22 1067.43 0.062

8 68.146 58.22 0.092 67.71 1148.52 0.106

4.2 Results analysis

The first experiment allows us to compare the performance of the two types of parallelism. Experiments

were run on 2, 4, 6, and 8 GPUs. In the case of model parallel training we use an automatic layer distribution

by time. This distribution traces the elapsed time of each layer to determine how many layers to allocate

per GPU.

Both table 3 and table 4 show execution times of trainings. However, if we look only at the results of

table 3 we can make some important observations: 1) The accuracy generated by the two types of

parallelism is similar. This shows us that despite the fact that model parallelism is oriented to the training

of large neural networks, the results are acceptable and comparable with those of data parallelism. 2) In the

previous premise the accuracy is similar. However, the execution times are very different between both

types of parallelism. The performance difference when comparing the time of 8 GPUs is noticeable. Data

parallel shows a time of 58.22 seconds while model parallel reports a time of 1148.52 seconds. Clearly

model parallel performance is degraded by data waiting between GPUs. Even though portions of the neural

network run on different GPUs, the neural network is still a sequence of layers that must be respected. 3)

Data parallel performance increases when scaling on GPUs. This is very different from model parallel

where the time with 2 GPUs is similar to the time with 8 GPUs. It is interesting how with more GPUs a

higher overhead is generated because the neural network is even more partitioned. With 2 GPUs the

processing is slower, but there is less waiting for the GPUs.

Regarding the results of the table 4 we can highlight two important aspects: First, for both data parallel

and model parallel there is a slight degradation of accuracy. This is generated by the reduction in training

accuracy. Second, the results are similar to 32-bit training, taking into account the aforementioned aspects

regarding the results of the table 3.

5 Concluding Remarks

Neural networks are gaining more and more popularity due to their great power to help solve complex

problems in many fields of science. In parallel, the complexity of neural network models increases along

with the hardware requirements. Due to how difficult and expensive the hardware is, many strategies have

been developed to parallelize the processes involved in training neural networks.

In this study we tried to cover the most important concepts together with a large amount of research

carried out in the field. The main types of parallelism (data and model parallelism) and the variants that

exist, such as pipeline parallelism or hybrid parallelism, were taken into account. In addition, the topic of

Mixture of Experts was addressed, which is relatively new in the field of deep learning. In this work,

experimentation with the two main types of parallelism was presented and the result allowed us to contrast

in a general and brief way some differences that exist between these types. Finally, it is clear that in this

work it is not possible to cover all the research and developments that exist related to parallelism in DL.

However, readers will be able to generate a very clear idea of the current panorama and the complexity that

surrounds this field.

ORCID iD

Hairol Romero-Sandí https://orcid.org/0000-0002-3199-1244

Romero-Sandí, Núñez y Rojas/Revista Colombiana de Computación, 2024, Vol. 25, No. 1, pp. 60-73

67

Elvis Rojas https://orcid.org/0000-0002-4238-0908

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., . . . Zheng, X. (2016, March 14).

TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems.

arXiv(1603.04467 [cs.DC]). doi:10.48550/arXiv.1603.04467
Agarwal, S., Yan, C., Zhang, Z., & Venkataraman, S. (2023, October). BagPipe: Accelerating Deep

Recommendation Model Training. SOSP '23: Proceedings of the 29th Symposium on Operating

Systems Principles (SOSP '23) (pp. 348-363). Koblenz, Germany: Association for Computing

Machinery, New York, NY, USA. doi:10.1145/3600006.3613142

Akintoye, S. B., Han, L., Zhang, X., Chen, H., & Zhang, D. (2022). A Hybrid Parallelization Approach

for Distributed and Scalable Deep Learning. IEEE Access, 10, 77950-77961.

doi:10.1109/ACCESS.2022.3193690

Albawi, S., Mohammed, T. A., & Al-Zawi, S. (2017). Understanding of a convolutional neural network.

2017 International Conference on Engineering and Technology (ICET) (pp. 1-6). Antalya, Turkey:

IEEE. doi:10.1109/ICEngTechnol.2017.8308186

Aminabadi, R. Y., Rajbhandari, S., Awan, A. A., Li, C., Li, D., Zheng, E., . . . He, Y. (2022). DeepSpeed-

Inference: Enabling Efficient Inference of Transformer Models at Unprecedented Scale. SC22:

International Conference for High Performance Computing, Networking, Storage and Analysis

(pp. 1-15). Dallas, TX, USA: IEEE. doi:10.1109/SC41404.2022.00051

Batur Dinler, Ö., Şahin, B. C., & Abualigah, L. (2021, November 30). Comparison of Performance of

Phishing Web Sites with Different DeepLearning4J Models. European Journal of Science and

Technology(28), 425-431. doi:10.31590/ejosat.1004778

Ben-Nun, T., & Hoefler, T. (2019, August 30). Demystifying Parallel and Distributed Deep Learning: An

In-depth Concurrency Analysis. ACM Computing Surveys (CSUR), 52(4), 1-43, Article No. 65.

doi:10.1145/3320060

Cai, Z., Yan, X., Ma, K., Yidi, W., Huang, Y., Cheng, J., . . . Yu, F. (2022, August 1). TensorOpt:

Exploring the Tradeoffs in Distributed DNN Training With Auto-Parallelism. IEEE Transactions

on Parallel and Distributed Systems, 33(8), 1967-1981. doi:10.1109/TPDS.2021.3132413

Camp, D., Garth, C., Childs, H., Pugmire, D., & Joy, K. (2011, November). Streamline Integration Using

MPI-Hybrid Parallelism on a Large Multicore Architecture. IEEE Transactions on Visualization

and Computer Graphics, 17(11), 1702-1713. doi:10.1109/TVCG.2010.259

Chen, C.-C., Yang, C.-L., & Cheng, H.-Y. (2019, October 28). Efficient and Robust Parallel DNN

Training through Model Parallelism on Multi-GPU Platform. arXiv:1809.02839v4 [cs.DC].

doi:10.48550/arXiv.1809.02839

Chen, M. (2023, March 15). Analysis of Data Parallelism Methods with Deep Neural Network. ITCE '22:

Proceedings of the 2022 6th International Conference on Electronic Information Technology and

Computer Engineering (pp. 1857-1861). Xiamen, China: Association for Computing Machinery,

New York, NY, USA. doi:10.1145/3573428.3573755

Chen, T., Huang, S., Xie, Y., Jiao, B., Jiang, D., Zhou, H., . . . Wei, F. (2022, June 2). Task-Specific

Expert Pruning for Sparse Mixture-of-Experts. arXiv:2206.00277v2 [cs.LG], 1-13.

doi:10.48550/arXiv.2206.00277

Chen, T., Li, M., Li, Y., Lin, M., Wang, N., Wang, M., . . . Zhang, Z. (2015, December 3). MXNet: A

Flexible and Efficient Machine Learning Library for Heterogeneous Distributed Systems. arXiv,

arXiv:1512.01274v1 [cs.DC], 1-6. doi:10.48550/arXiv.1512.01274

Chen, Z., Deng, Y., Wu, Y., Gu, Q., & Li, Y. (2022). Towards Understanding the Mixture-of-Experts

Layer in Deep Learning. In A. H. Oh, A. Agarwal, D. Belgrave, & K. Cho (Ed.), Advances in

Neural Information Precessing Systems. New Orleans, Louisiana, USA. Retrieved from

https://openreview.net/forum?id=MaYzugDmQV

Collobert, R., Bengio, S., & Mariéthoz, J. (2002, October 30). Torch: a modular machine learning

software library. Research Report, IDIAP, Martigny, Switezerland. Retrieved from

https://publications.idiap.ch/downloads/reports/2002/rr02-46.pdf

Dai, D., Dong, L., Ma, S., Zheng, B., Sui, Z., Chang, B., & Wei, F. (2022, May). StableMoE: Stable

Routing Strategy for Mixture of Experts. In S. Muresan, P. Nakov, & A. Villavicencio (Ed.),

Romero-Sandí, Núñez y Rojas/Revista Colombiana de Computación, 2024, Vol. 25, No. 1, pp. 60-73

68

Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics. 1: Long

Papers, pp. 7085–7095. Dublin, Ireland: Association for Computational Linguistics.

doi:10.18653/v1/2022.acl-long.489

Duan, Y., Lai, Z., Li, S., Liu, W., Ge, K., Liang, P., & Li, D. (2022). HPH: Hybrid Parallelism on

Heterogeneous Clusters for Accelerating Large-scale DNNs Training. 2022 IEEE International

Conference on Cluster Computing (CLUSTER) (pp. 313-323). Heidelberg, Germany: IEEE.

doi:10.1109/CLUSTER51413.2022.00043

Fan, S., Rong, Y., Meng, C., Cao, Z., Wang, S., Zheng, Z., . . . Lin, W. (2021, February). DAPPLE: a

pipelined data parallel approach for training large models. PPoPP '21: Proceedings of the 26th

ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (pp. 431-445).

Virtual Event, Republic of Korea: Association for Computing Machinery, New York, NY, USA.

doi:10.1145/3437801.3441593

Fedus, W., Zoph, B., & Shazeer, N. (2022, January 1). Switch transformers: scaling to trillion parameter

models with simple and efficient sparsity. (A. Clark, Ed.) The Journal of Machine Learning

Research, 23(1), Article No. 120, 5232-5270. Retrieved from

https://dl.acm.org/doi/abs/10.5555/3586589.3586709

Gholami, A., Azad, A., Jin, P., Keutzer, K., & Buluc, A. (2018). Integrated Model, Batch, and Domain

Parallelism in Training Neural Networks. SPAA '18: Proceedings of the 30th on Symposium on

Parallelism in Algorithms and Architectures (pp. 77-86). Vienna, Austria: Association for

Computing Machinery, New York, NY, USA. doi:10.1145/3210377.3210394

Guan, L., Yin, W., Li, D., & Lu, X. (2020, November 9). XPipe: Efficient Pipeline Model Parallelism for

Multi-GPU DNN Training. arXiv:1911.04610v3 [cs.LG]. doi:10.48550/arXiv.1911.04610

Harlap, A., Narayanan, D., Phanishayee, A., Seshadri, V., Devanur, N., Ganger, G., & Gibbons, P. (2018,

June 8). PipeDream: Fast and Efficient Pipeline Parallel DNN Training. arXiv:1806.03377v1

[cs.DC], 1-14. doi:10.48550/arXiv.1806.03377
Hazimeh, H., Zhao, Z., Aakanksha, C., Sathiamoorthy, M., Chen, Y., Mazumder, R., . . . Chi, E. H.

(2024). DSelect-k: differentiable selection in the mixture of experts with applications to multi-task

learning. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P. S. Liang, & J. W. Vaughan (Ed.),

NIPS'21: Proceedings of the 35th International Conference on Neural Information Processing

Systems. Article No. 2246, pp. 29335-29347. Curran Associates Inc., Red Hook, NY, USA.

doi:10.5555/3540261.3542507

He, C., Li, S., Soltanolkotabi, M., & Avestimehr, S. (2021, July). PipeTransformer: Automated Elastic

Pipelining for Distributed Training of Large-scale Models. In M. Meila, & T. Zhang (Ed.),

Proceedings of the 38th International Conference on Machine Learning. 139, pp. 4150-4159.

PMLR. Retrieved from https://proceedings.mlr.press/v139/he21a.html

He, J., Qiu, J., Zeng, A., Yang, Z., Zhai, J., & Tang, J. (2021, March 24). FastMoE: A Fast Mixture-of-

Expert Training System. arXiv:2103.13262v1 [cs.LG], 1-11. doi:10.48550/arXiv.2103.13262

Hey, T. (2020, October 1). Opportunities and Challenges from Artificial Intelligence and Machine

Learning for the Advancement of Science, Technology, and the Office of Science Missions.

Technical Report, USDOE Office of Science (SC), Advanced Scientific Computing Research

(ASCR), United States. doi:10.2172/1734848

Hopfield, J. J. (1988, September). Artificial neural networks. IEEE Circuits and Devices Magazine, 4(5),

3-10. doi:10.1109/101.8118

Howison, M., Bethel, E. W., & Childs, H. (2012, January). Hybrid Parallelism for Volume Rendering on

Large-, Multi-, and Many-Core Systems. IEEE Transactions on Visualization and Computer

Graphics, 18(1), 17-29. doi:10.1109/TVCG.2011.24

Hu, Y., Imes, C., Zhao, X., Kundu, S., Beerel, P. A., Crago, S. P., & Walters, J. P. (2021, October 28).

Pipeline Parallelism for Inference on Heterogeneous Edge Computing. arXiv:2110.14895v1

[cs.DC], 1-12. doi:10.48550/arXiv.2110.14895

Huang, Y., Cheng, Y., Bapna, A., Firat, O., Chen, M. X., Chen, D., . . . Chen, Z. (2019, December 8).

GPipe: efficient training of giant neural networks using pipeline parallelism. In H. M. Wallach, H.

Larochelle, A. Beygelzimer, F. d'Alché-Buc, & E. B. Fox (Ed.), Proceedings of the 33rd

International Conference on Neural Information Processing Systems (NIPS'19). Article No. 10, pp.

103 - 112. Vancouver, BC, Canada: Curran Associates Inc., Red Hook, NY, USA.

doi:10.5555/3454287.3454297

Hwang, C., Cui, W., Xiong, Y., Yang, Z., Liu, Z., Hu, H., . . . Xiong, Y. (2023, June 5). Tutel: Adaptive

Mixture-of-Experts at Scale. arXiv:2206.03382v2 [cs.DC], 1-19. doi:10.48550/arXiv.2206.03382

Romero-Sandí, Núñez y Rojas/Revista Colombiana de Computación, 2024, Vol. 25, No. 1, pp. 60-73

69

Janbi, N., Katib, I., & Mehmood, R. (2023, May). Distributed artificial intelligence: Taxonomy, review,

framework, and reference architecture. Intelligent Systems with Applications, 18, 200231.

doi:10.1016/j.iswa.2023.200231

Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., . . . Darrell, T. (2014, November

3). Caffe: Convolutional Architecture for Fast Feature Embedding. MM '14: Proceedings of the

22nd ACM international conference on Multimedia (pp. 675-678). Orlando, Florida, USA:

Association for Computing Machinery, New York, NY, USA. doi:10.1145/2647868.2654889

Jia, Z., Lin, S., Qi, C. R., & Aiken, A. (2018). Exploring Hidden Dimensions in Accelerating

Convolutional Neural Networks. In J. Dy, & A. Krause (Ed.), Proceedings of the 35th

International Conference on Machine Learning. 80, pp. 2274-2283. PMLR. Retrieved from

https://proceedings.mlr.press/v80/jia18a.html

Jiang, W., Zhang, Y., Liu, P., Peng, J., Yang, L. T., Ye, G., & Jin, H. (2020, January). Exploiting

potential of deep neural networks by layer-wise fine-grained parallelism. Future Generation

Computer Systems, 102, 210-221. doi:10.1016/j.future.2019.07.054

Kamruzzaman, M., Swanson, S., & Tullsen, D. M. (2013, November 17). Load-balanced pipeline

parallelism. SC '13: Proceedings of the International Conference on High Performance

Computing, Networking, Storage and Analysis. Article No. 14, pp. 1-12. Denver, Colorado, USA:

Association for Computing Machinery, New York, NY, USA. doi:10.1145/2503210.2503295

Kirby, A. C., Samsi, S., Jones, M., Reuther, A., Kepner, J., & Gadepally, V. (2020, September). Layer-

Parallel Training with GPU Concurrency of Deep Residual Neural Networks via Nonlinear

Multigrid. (2007.07336 [cs.LG]), 1-7. doi:10.1109/HPEC43674.2020.9286180

Kossmann, F., Jia, Z., & Aiken, A. (2022, August 2). Optimizing Mixture of Experts using Dynamic

Recompilations. arXiv:2205.01848v2 [cs.LG] , 1-13. doi:10.48550/arXiv.2205.01848

Krizhevsky, A. (2014, April 26). One weird trick for parallelizing convolutional neural networks.

arXiv:1404.5997v2 [cs.NE], 1-7. doi:10.48550/arXiv.1404.5997
Kukačka, J., Golkov, V., & Cremers, D. (2017, October 29). Regularization for Deep Learning: A

Taxonomy. arXiv:1710.10686v1 [cs.LG], 1-23. doi:10.48550/arXiv.1710.10686

Li, C., Yao, Z., Wu, X., Zhang, M., Holmes, C., Li, C., & He, Y. (2024, January 14). DeepSpeed Data

Efficiency: Improving Deep Learning Model Quality and Training Efficiency via Efficient Data

Sampling and Routing. arXiv:2212.03597v3 [cs.LG], 1-19. doi:10.48550/arXiv.2212.03597

Li, J., Jiang, Y., Zhu, Y., Wang, C., & Xu, H. (2023, July). Accelerating Distributed MoE Training and

Inference with Lina. 2023 USENIX Annual Technical Conference (USENIX ATC 23) (pp. 945-

959). USENIX Association, Boston, MA, USA. Retrieved from

https://www.usenix.org/conference/atc23/presentation/li-jiamin

Li, S., & Hoefler, T. (2021, November). Chimera: efficiently training large-scale neural networks with

bidirectional pipelines. SC '21: Proceedings of the International Conference for High Performance

Computing, Networking, Storage and Analysis. Article No. 27, pp. 1-14. St. Louis, Missouri, USA:

Association for Computing Machinery, New York, NY, USA. doi:10.1145/3458817.3476145

Li, S., Liu, H., Bian, Z., Fang, J., Huang, H., Liu, Y., . . . You, Y. (2023, August). Colossal-AI: A Unified

Deep Learning System For Large-Scale Parallel Training. ICPP '23: Proceedings of the 52nd

International Conference on Parallel Processing (pp. 766-775). Salt Lake City, UT, USA:

Association for Computing Machinery, New York, NY, USA. doi:10.1145/3605573.3605613

Li, S., Mangoubi, O., Xu, L., & Guo, T. (2021). Sync-Switch: Hybrid Parameter Synchronization for

Distributed Deep Learning. 2021 IEEE 41st International Conference on Distributed Computing

Systems (ICDCS) (pp. 528-538). DC, USA: IEEE. doi:10.1109/ICDCS51616.2021.00057

Li, Y., Huang, J., Li, Z., Zhou, S., Jiang, W., & Wang, J. (2023). HSP: Hybrid Synchronous Parallelism

for Fast Distributed Deep Learning. ICPP '22: Proceedings of the 51st International Conference

on Parallel Processing (pp. 1-11). Bordeaux, France: Association for Computing Machinery, New

York, NY, USA. doi:10.1145/3545008.3545024

Li, Z., Liu, F., Yang, W., Peng, S., & Zhou, J. (2022, December). A Survey of Convolutional Neural

Networks: Analysis, Applications, and Prospects. IEEE Transactions on Neural Networks and

Learning Systems, 33(12), 6999-7019. doi:10.1109/TNNLS.2021.3084827

Li, Z., Zhuang, S., Guo, S., Zhuo, D., Zhang, H., Song, D., & Stoica, I. (2021). TeraPipe: Token-Level

Pipeline Parallelism for Training Large-Scale Language Models. In M. Meila, & T. Zhang (Ed.),

Proceedings of the 38th International Conference on Machine Learning. 139, pp. 6543-6552.

PMLR. Retrieved from https://proceedings.mlr.press/v139/li21y.html

Romero-Sandí, Núñez y Rojas/Revista Colombiana de Computación, 2024, Vol. 25, No. 1, pp. 60-73

70

Liang, P., Tang, Y., Zhang, X., Bai, Y., Su, T., Lai, Z., . . . Li, D. (2023, August). A Survey on Auto-

Parallelism of Large-Scale Deep Learning Training. IEEE Transactions on Parallel and

Distributed Systems, 34(8), 2377-2390. doi:10.1109/TPDS.2023.3281931

Liu, D., Chen, X., Zhou, Z., & Ling, Q. (2020, May 15). HierTrain: Fast Hierarchical Edge AI Learning

With Hybrid Parallelism in Mobile-Edge-Cloud Computing. IEEE Open Journal of the

Communications Society, 1, 634-645. doi:10.1109/OJCOMS.2020.2994737

Liu, W., Lai, Z., Li, S., Duan, Y., Ge, K., & Li, D. (2022). AutoPipe: A Fast Pipeline Parallelism

Approach with Balanced Partitioning and Micro-batch Slicing. 2022 IEEE International

Conference on Cluster Computing (CLUSTER) (pp. 301-312). Heidelberg, Germany: IEEE.

doi:10.1109/CLUSTER51413.2022.00042

Ma, J., Zhao, Z., Yi, X., Chen, J., Hong, L., & Chi, E. H. (2018, July). Modeling Task Relationships in

Multi-task Learning with Multi-gate Mixture-of-Experts. KDD '18: Proceedings of the 24th ACM

SIGKDD International Conference on Knowledge Discovery & Data Mining (pp. 1930-1939).

London, United Kingdom: Association for Computing Machinery, New York, NY, USA.

doi:10.1145/3219819.3220007

Manaswi, N. K. (2018). Understanding and Working with Keras. In N. K. Manaswi, Deep Learning with

Applications Using Python: Chatbots and Face, Object, and Speech Recognition With TensorFlow

and Keras (pp. 31–43). Berkeley, CA, USA: Apress. doi:10.1007/978-1-4842-3516-4

Mastoras, A., & Gross, T. R. (2018, February 24). Understanding Parallelization Tradeoffs for Linear

Pipelines. In Q. Chen, Z. Huang, & P. Balaji (Ed.), PMAM'18: Proceedings of the 9th

International Workshop on Programming Models and Applications for Multicores and Manycores

(pp. 1-10). Vienna, Austria: Association for Computing Machinery, New York, NY, USA.

doi:10.1145/3178442.3178443

Miao, X., Wang, Y., Jiang, Y., Shi, C., Nie, X., Zhang, H., & Cui, B. (2022, November 1). Galvatron:

Efficient Transformer Training over Multiple GPUs Using Automatic Parallelism. Proceedings of
the VLDB Endowment, 16(3), 470-479. doi:10.14778/3570690.3570697

Mirhoseini, A., Pham, H., Le, Q. V., Steiner, B., Larsen, R., Zhou, Y., . . . Dean, J. (2017, June 25).

Device Placement Optimization with Reinforcement Learning. arXiv:1706.04972v2 [cs.LG], 1-11.

doi:10.48550/arXiv.1706.04972

Mittal, S., & Vaishay, S. (2019, October). A survey of techniques for optimizing deep learning on GPUs.

Journal of Systems Architecture, 99, 101635. doi:10.1016/j.sysarc.2019.101635

Moreno-Alvarez, S., Haut, J. M., Paoletti, M. E., & Rico-Gallego, J. A. (2021, June 21). Heterogeneous

model parallelism for deep neural networks. Neurocomputing, 441, 1-12.

doi:10.1016/j.neucom.2021.01.125

Narayanan, D., Harlap, A., Phanishayee, A., Seshadri, V., Devanur, N. R., Ganger, G. R., . . . Zaharia, M.

(2019, October). PipeDream: generalized pipeline parallelism for DNN training. SOSP '19:

Proceedings of the 27th ACM Symposium on Operating Systems Principles (pp. 1-15). Huntsville,

Ontario, Canada: Association for Computing Machinery, New York, NY, USA.

doi:10.1145/3341301.3359646

Narayanan, D., Shoeybi, M., Casper, J., LeGresley, P., Patwary, M., Korthikanti, V., . . . Zaharia, M.

(2021). Efficient large-scale language model training on GPU clusters using megatron-LM. SC

'21: Proceedings of the International Conference for High Performance Computing, Networking,

Storage and Analysis. Article No. 58, pp. 1-15. St. Louis, Missouri, USA: Association for

Computing Machinery, New York, NY, USA. doi:10.1145/3458817.3476209

Nie, X., Miao, X., Cao, S., Ma, L., Liu, Q., Xue, J., . . . Cui, B. (2022, October 9). EvoMoE: An

Evolutional Mixture-of-Experts Training Framework via Dense-To-Sparse Gate.

arXiv:2112.14397v2 [cs.LG], 1-14. doi:10.48550/arXiv.2112.14397

Oyama, Y., Maruyama, N., Dryden, N., McCarthy, E., Harrington, P., Balewski, J., . . . Van Essen, B.

(2021, July 1). The Case for Strong Scaling in Deep Learning: Training Large 3D CNNs With

Hybrid Parallelism. IEEE Transactions on Parallel and Distributed Systems, 32(7), 1641-1652.

doi:10.1109/TPDS.2020.3047974

Park, J. H., Yun, G., Yi, C. M., Nguyen, N. T., Lee, S., Choi, J., . . . Choi, Y.-r. (2020, July). HetPipe:

Enabling Large DNN Training on (Whimpy) Heterogeneous GPU Clusters through Integration of

Pipelined Model Parallelism and Data Parallelism. 2020 USENIX Annual Technical Conference

(USENIX ATC 20) (pp. 307-321). USENIX Association. Retrieved from

https://www.usenix.org/conference/atc20/presentation/park

Romero-Sandí, Núñez y Rojas/Revista Colombiana de Computación, 2024, Vol. 25, No. 1, pp. 60-73

71

Pouyanfar, S., Sadiq, S., Yan, Y., Tian, H., Tao, Y., Presa, M. R., . . . Iyengar, S. S. (2018, September

18). A Survey on Deep Learning: Algorithms, Techniques, and Applications. ACM Computing

Surveys (CSUR), 51(5), 1-36, Article No. 92. doi:10.1145/3234150

Rajbhandari, S., Li, C., Yao, Z., Zhang, M., Aminabadi, R. Y., Awan, A. A., . . . He, Y. (2022, July).

DeepSpeed-MoE: Advancing Mixture-of-Experts Inference and Training to Power Next-

Generation AI Scale. In K. Chaudhuri, S. Jegelka, L. Song, C. Szepesvari, G. Niu, & S. Sabato

(Ed.), Proceedings of the 39th International Conference on Machine Learning. 162, pp. 18332-

18346. PMLR. Retrieved from https://proceedings.mlr.press/v162/rajbhandari22a.html

Rasley, J., Rajbhandari, S., Ruwase, O., & He, Y. (2020, August). DeepSpeed: System Optimizations

Enable Training Deep Learning Models with Over 100 Billion Parameters. KDD '20: Proceedings

of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (pp.

3505 - 3506). Virtual Event, CA, USA: Association for Computing Machinery, New York, NY,

USA. doi:10.1145/3394486.3406703

Ravanelli, M., Parcollet, T., & Bengio, Y. (2019). The Pytorch-kaldi Speech Recognition Toolkit. 2019

IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 6465-

6469). Brighton, UK: IEEE. doi:10.1109/ICASSP.2019.8683713

Riquelme, C., Puigcerver, J., Mustafa, B., Neumann, M., Jenatton, R., Pinto, A. S., . . . Houlsby, N.

(2024, December). Scaling vision with sparse mixture of experts. In M. Ranzato, A. Beygelzimer,

Y. Dauphin, P. S. Liang, & J. W. Vaughan (Ed.), NIPS'21: Proceedings of the 35th International

Conference on Neural Information Processing Systems. Article No. 657, pp. 8583-8595. Curran

Associates Inc., Red Hook, NY, USA. doi:10.5555/3540261.3540918

Rojas, E., Quirós-Corella, F., Jones, T., & Meneses, E. (2022). Large-Scale Distributed Deep Learning: A

Study of Mechanisms and Trade-Offs with PyTorch. In I. Gitler, C. J. Barrios Hernández, & E.

Meneses (Ed.), High Performance Computing. CARLA 2021. Communications in Computer and

Information Science. 1540, pp. 177-192. Springer, Cham. doi:10.1007/978-3-031-04209-6_13
Shazeer, N., Mirhoseini, A., Maziarz, K., Davis, A., Le, Q., Hinton, G., & Dean, J. (2017). Outrageously

Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer. International Conference

on Learning Representations (ICLR 2017), (pp. 1-19). Toulon, France. Retrieved from

https://openreview.net/forum?id=B1ckMDqlg

Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper, J., & Catanzaro, B. (2020, March 13).

Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism.

arXiv:1909.08053v4 [cs.CL], 1-15. doi:10.48550/arXiv.1909.08053

Song, L., Mao, J., Zhuo, Y., Qian, X., Li, H., & Chen, Y. (2019). HyPar: Towards Hybrid Parallelism for

Deep Learning Accelerator Array. 2019 IEEE International Symposium on High Performance

Computer Architecture (HPCA) (pp. 56-68). Washington, DC, USA: IEEE.

doi:10.1109/HPCA.2019.00027

Stevens, R., Taylor, V., Nichols, J., Maccabe, A. B., Yelick, K., & Brown, D. (2020, February 1). AI for

Science: Report on the Department of Energy (DOE) Town Halls on Artificial Intelligence (AI) for

Science. Technical Report, USDOE; Lawrence Berkeley National Laboratory (LBNL); Argonne

National Laboratory (ANL); Oak Ridge National Laboratory (ORNL), United States.

doi:10.2172/1604756

Subhlok, J., Stichnoth, J. M., O'Hallaron, D. O., & Gross, T. (1993, July 1). Exploiting task and data

parallelism on a multicomputer. ACM SIGPLAN Notices, 28(7), 13-22.

doi:10.1145/173284.155334

Takisawa, N., Yazaki, S., & Ishihata, H. (2020). Distributed Deep Learning of ResNet50 and VGG16

with Pipeline Parallelism. 2020 Eighth International Symposium on Computing and Networking

Workshops (CANDARW) (pp. 130-136). Naha, Japan: IEEE.

doi:10.1109/CANDARW51189.2020.00036

Tanaka, M., Taura, K., Hanawa, T., & Torisawa, K. (2021). Automatic Graph Partitioning for Very

Large-scale Deep Learning. 2021 IEEE International Parallel and Distributed Processing

Symposium (IPDPS) (pp. 1004-1013). Portland, OR, USA: IEEE.

doi:10.1109/IPDPS49936.2021.00109

Verbraeken, J., Wolting, M., Katzy, J., Kloppenburg, J., Verbelen, T., & Rellermeyer, J. S. (2020). A

Survey on Distributed Machine Learning. ACM Computing Surveys (CSUR), 53(2), 1-33, Article

No. 30. doi:10.1145/3377454

Wang, H., Imes, C., Kundu, S., Beerel, P. A., Crago, S. P., & Walters, J. P. (2023). Quantpipe: Applying

Adaptive Post-Training Quantization For Distributed Transformer Pipelines In Dynamic Edge

Romero-Sandí, Núñez y Rojas/Revista Colombiana de Computación, 2024, Vol. 25, No. 1, pp. 60-73

72

Environments. ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP) (pp. 1-5). Rhodes Island, Greece: IEEE.

doi:10.1109/ICASSP49357.2023.10096632

Wang, S.-C. (2003). Artificial Neural Network. In S.-C. Wang, Interdisciplinary Computing in Java

Programming (1 ed., Vol. 743, pp. 81-100). Boston, MA, USA: Springer. doi:10.1007/978-1-

4615-0377-4_5

Wang, Y., Feng, B., Wang, Z., Geng, T., Barker, K., Li, A., & Ding, Y. (2023, July). MGG: Accelerating

Graph Neural Networks with Fine-Grained Intra-Kernel Communication-Computation Pipelining

on Multi-GPU Platforms. 17th USENIX Symposium on Operating Systems Design and

Implementation (OSDI 23) (pp. 779-795). Boston, MA, USA: USENIX Association. Retrieved

from https://www.usenix.org/conference/osdi23/presentation/wang-yuke

Wu, J. (2017, May 1). Introduction to Convolutional Neural Networks. Nanjing Universit, National Key

Lab for Novel Software Technology, China. Retrieved from

https://cs.nju.edu.cn/wujx/paper/CNN.pdf

Yang, B., Zhang, J., Li , J., Ré, C., Aberger, C. R., & De Sa, C. (2021, March 15). Proceedings of the 4th

Machine Learning and Systems Conference, 3, pp. 269-296. San Jose, CA, USA. Retrieved from

https://proceedings.mlsys.org/paper_files/paper/2021/file/9412531719be7ccf755c4ff98d0969dc-

Paper.pdf

Yang, P., Zhang, X., Zhang, W., Yang, M., & Wei, H. (2022). Group-based Interleaved Pipeline

Parallelism for Large-scale DNN Training. The Tenth International Conference on Learning

Representations (ICLR 2022), (pp. 1-15). Retrieved from https://openreview.net/forum?id=cw-

EmNq5zfD

Yoon, J., Byeon, Y., Kim, J., & Lee, H. (2022, July 15). EdgePipe: Tailoring Pipeline Parallelism With

Deep Neural Networks for Volatile Wireless Edge Devices. IEEE Internet of Things Journal,

9(14), 11633 - 11647. doi:10.1109/JIOT.2021.3131407
Yuan, L., He, Q., Chen, F., Dou, R., Jin, H., & Yang, Y. (2023, April 30). PipeEdge: A Trusted

Pipelining Collaborative Edge Training based on Blockchain. In Y. Ding, J. Tang, J. Sequeda, L.

Aroyo, C. Castillo, & G.-J. Houben (Ed.), WWW '23: Proceedings of the ACM Web Conference

2023 (pp. 3033-3043). Austin, TX, USA: Association for Computing Machinery, New York, NY,

USA. doi:10.1145/3543507.3583413

Zeng, Z., Liu, C., Tang, Z., Chang, W., & Li, K. (2021). Training Acceleration for Deep Neural

Networks: A Hybrid Parallelization Strategy. 2021 58th ACM/IEEE Design Automation

Conference (DAC) (pp. 1165-1170). San Francisco, CA, USA: IEEE.

doi:10.1109/DAC18074.2021.9586300

Zhang, J., Niu, G., Dai, Q., Li, H., Wu, Z., Dong, F., & Wu, Z. (2023, October 28). PipePar: Enabling fast

DNN pipeline parallel training in heterogeneous GPU clusters. Neurocomputing, 555, 126661.

doi:10.1016/j.neucom.2023.126661

Zhang, P., Lee, B., & Qiao, Y. (2023, October). Experimental evaluation of the performance of Gpipe

parallelism. Future Generation Computer Systems, 147, 107-118.

doi:10.1016/j.future.2023.04.033

Zhang, S., Diao, L., Wang, S., Cao, Z., Gu, Y., Si, C., . . . Lin, W. (2023, February 16). Auto-Parallelizing

Large Models with Rhino: A Systematic Approach on Production AI Platform.

arXiv:2302.08141v1 [cs.DC], 1-16. doi:10.48550/arXiv.2302.08141

Zhao, L., Xu, R., Wang, T., Tian, T., Wang, X., Wu, W., . . . Jin, X. (2021, January 14). BaPipe:

Exploration of Balanced Pipeline Parallelism for DNN Training. arXiv:2012.12544v2 [cs.DC].

doi:10.48550/arXiv.2012.12544

Zhao, L., Xu, R., Wang, T., Tian, T., Wang, X., Wu, W., . . . Jin, X. (2022). BaPipe: Balanced Pipeline

Parallelism for DNN Training. Parallel Processing Letters, 32(03n04), 2250005, 1-17.

doi:10.1142/S0129626422500050

Zhao, S., Li, F., Chen, X., Guan, X., Jiang, J., Huang, D., . . . Cui, H. (2022, March 1). vPipe: A

Virtualized Acceleration System for Achieving Efficient and Scalable Pipeline Parallel DNN

Training. IEEE Transactions on Parallel and Distributed Systems, 33(3), 489-506.

doi:10.1109/TPDS.2021.3094364

Zheng, L., Li, Z., Zhang, H., Zhuang, Y., Chen, Z., Huang, Y., . . . Stoica, I. (2022, July). Alpa:

Automating Inter- and Intra-Operator Parallelism for Distributed Deep Learning. 16th USENIX

Symposium on Operating Systems Design and Implementation (OSDI 22) (pp. 559-578). Carlsbad,

Romero-Sandí, Núñez y Rojas/Revista Colombiana de Computación, 2024, Vol. 25, No. 1, pp. 60-73

73

CA, USA: USENIX Association. Retrieved from

https://www.usenix.org/conference/osdi22/presentation/zheng-lianmin

Zhou, Q., Guo, S., Qu, Z., Li, P., Li, L., Guo, M., & Wang, K. (2021, May 1). Petrel: Heterogeneity-

Aware Distributed Deep Learning Via Hybrid Synchronization. IEEE Transactions on Parallel

and Distributed Systems, 32(5), 1030-1043. doi:10.1109/TPDS.2020.3040601

Zhu, X. (2023, April 28). Implement deep neuron networks on VPipe parallel system: a ResNet variant

implementation. In X. Li (Ed.), Proceedings Third International Conference on Artificial

Intelligence and Computer Engineering (ICAICE 2022). 12610, p. 126104I. Wuhan, China:

International Society for Optics and Photonics, SPIE. doi:10.1117/12.2671359

	ORCID iD

