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Abstract. The current popularity in the application of artificial intelligence to solve complex problems 

is growing. The appearance of chats based on artificial intelligence or natural language processing has 

generated the creation of increasingly large and sophisticated neural network models, which are the 

basis of current developments in artificial intelligence. These neural networks can be composed of 

billions of parameters and their training is not feasible without the application of approaches based on 

parallelism. This paper focuses on studying pipeline parallelism, which is one of the most important 

types of parallelism used to train neural network models in deep learning. In this study we offer a look 

at the most important concepts related to the topic and we present a detailed analysis of 3 pipeline 

parallelism libraries: Torchgpipe, FairScale, and DeepSpeed. We analyze important aspects of these 

libraries such as their implementation and features. In addition, we evaluated them experimentally, 

carrying out parallel trainings and taking into account aspects such as the number of stages in the 

training pipeline and the type of balance. 

Keywords: Deep learning, parallelism, artificial neural networks, distributed training. 

1   Introduction 

In the era of Artificial Intelligence, Distributed Neural Networks (DNN) have become a fundamental tool 

for processing large volumes of data and performing complex tasks (Alshamrani & Ma, 2022). Speech 

recognition for transcription to text, natural language recognition used by chatbots, computer vision for 

object detection and classification, content generation in music are some of the areas in which neural 

networks have demonstrated their effectiveness (Russakovsky et al., 2015; TensorFlow: Overview, 2023). 

These applications require intensive data processing and training of neural network models that can have 

trillions of parameters. 

Deep Learning (DL) has been revolutionary, as it enables models to be trained and complex problems to 

be addressed more efficiently. However, as neural networks become larger and more complex, significant 

computational challenges arise (Chilimbi et al., 2014). A critical aspect in distributed training is the 

parallelism strategy used to speed up the training process. Existing parallelism techniques include data 

parallelism and model parallelism. Model parallelism has been shown to be effective by breaking a model 

into smaller parts and distributing its training across different devices or nodes (Takisawa et al., 2020). 

In this article, a comparative analysis of Model Parallelism (MP) in DNN will be carried out. There are 

two main objectives: First, to describe the most important elements related to MP. Second, evaluate and 

compare the performance of different training libraries. In addition, the differences in features of the 

evaluated libraries are described and analyzed. The libraries used are Torchgpipe (TGP), FairScale (FSC) 

and DeepSpeed (DSP), using the Python framework called PyTorch. 

To perform this comparison, a series of experiments will be carried out using the same dataset and 

common reference models. Different metrics such as training time and training loss will be measured in 

order to determine the effectiveness and efficiency of each library with the same parameter settings. 

By analyzing and comparing these MP techniques in distributed neural networks, we hope to gain a 

deeper understanding of their strengths and limitations. Furthermore, it is expected to provide to the 
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research community with a practical guide on which libraries may be more suitable for their specific needs 

in terms of distributed training of DL models. 

2   Background 

2.1   Artificial Neural Networks 

Neural networks are computational models inspired by the biological concept of the functioning of the brain 

of living beings. They are an approach to DL that uses algorithms and data structures to process information 

and perform pattern recognition tasks. Neural networks are represented as a graph composed of nodes and 

edges. The interconnected nodes or neurons form layers, where each neuron takes inputs, performs 

calculations, and generates an output that is transmitted to the neurons in the next layer. These connections 

between neurons are assigned weights, which are adjusted during the network training process to optimize 

its performance. The ability of neural networks to learn and adapt from data and information provided 

during training is what makes them effective in pattern recognition and classification tasks in complex data 

(Farkas et al., 2020; Deep Learning, 2020). 

2.2   Deep learning frameworks 

The frameworks used for DL are sets of tools and software libraries designed to facilitate the development, 

training, and deployment of learning models. These frameworks provide a high-level programming 

interface that allows developers to build and work with neural networks and other DL models more 

efficiently by hiding low-level implementation details. DL frameworks offer a variety of features and 

utilities, such as predefined layers, optimization algorithms, training methods, visualization tools, and 

support for parallel and distributed processing. 

In addition, many frameworks also include integrations with numerical computing libraries and hardware 

accelerators to make the most of available computing power (Rojas et al., 2021). 

The DL landscape is constantly evolving, therefore there are several popular frameworks that are 

designed to make it easy to deploy and train DL models. These frameworks offer optimized operations for 

handling tensors and the efficient implementation of DL algorithms for CPUs, GPUs, and TPUs. Among 

some of the frameworks that can be found are TensorFlow (Abadi et al., 2016; TensorFlow: Overview, 

2023), MXNet (2023) and PlaidML (2023), which support the popular Keras (2023) high-level API. On 

the other hand, another framework like Caffe (Jia et al., 2014) developed by Berkeley AI Research and with 

contributions from the community, it is written in C++, with CUDA used for GPU computing and with 

support for using Python/Numpy and MATLAB. Likewise, Deeplearning4j (DL4J) (2023) is a suite of tools 

to run DL on JVM (Java Virtual Machine) and, as indicated by its creators, it is the only framework that 

allows training models from Java while interacting with the Python ecosystem. Finally, PyTorch (2023), 

which is the framework that has been selected to run the experiments performed in this paper by applying 

the parallelism technique called Pipeline Parallelism (PP). 

2.3   Distributed training 

Distributed training is used in the field of DL to train models simultaneously on multiple computing nodes. 

Instead of training the model on a single node, distributed training takes advantage of the computing power 

of multiple devices to speed up the training process and handle larger datasets. To speed up the training 

time, the data is divided into partitions and distributed among the nodes. Each node has a copy of the model 

and processes its own data partition, this in case of using the Data Parallel approach. Alternatively, when 

the models are very large, the Model Parallel distributed training approach is used. The latter will be the 

one that will be developed in this article (Huang et al., 2019). 
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(a) Data parallelism 

 

(b) Model parallelism 

Figure 1. Parallelism techniques. 

2.4   Parallelism techniques 

Data Parallelism (DP) is a technique used in DL to speed up the execution of algorithms by dividing data 

into smaller pieces and processing it simultaneously on multiple computing devices or nodes, same as 

shown in the figure 1a. According to Mofrad et al. (2020) the DP breaks the input data into small horizontal 

partitions where each partition can be processed separately. In Chen (2023) it is indicated that in DP, each 

computing node has a complete copy of the model and works with a portion of the data. Each copy of the 

model performs independent calculations on its own subset of data, and the results are then combined to 

obtain the final result (AllReduce function). This makes it possible to process large volumes of data more 

efficiently and reduce the execution time of the algorithms. 

Model Parallelism (MP) is used to accelerate the training and execution of learning models, this by 

dividing the model into partitions and these are distributed in different computing accelerators, similar to 

the figure 1b. In Mofrad et al. (2020) it is indicated that in MP the DNN layers are broken into vertical 

partitions where these partitions are usually processed following a Bulk Synchronous Parallel (BSP) share-

memory communication scheme. That is, each accelerator is in charge of processing a specific part of the 

model, be it a layer or a set of layers. Each part of the model performs independent calculations in its own 

accelerator, it communicates with the next accelerator that processes the next layer to send it the computed 

results (Krizhevsky, 2014). 

As indicated by Harlap et al. (2018) the MP is useful when working with large-scale models that do not 

fully fit into the memory of a single accelerator. By splitting the model into smaller parts and processing 

them in parallel, the MP achieves faster training times than the DP, allowing it to make efficient use of 

available computing resources. 

On the other hand, as pointed out by Dean et al. (2012) the performance benefits of distributing a DNN 

across multiple machines depend on the connectivity structure and computing needs of the model. Models 

with a large number of parameters or high computational demands typically benefit from access to more 

CPU and memory, to the point where communication costs dominate. Furthermore, according to Takisawa 

et al. (2020) learning performance degrades due to time spent communication between the nodes, and there 

may be an overload. 

Pipeline Parallelism (PP). The transfer of data of heterogeneous sizes in a cluster or between multiple 

clusters causes an inefficient use of the available network bandwidth, as evidenced by the experiments 

carried out by Yildirim et al. (2016). Therefore, pipelining, parallelism and concurrency are very effective 

in removing these bottlenecks, especially when used together and in the right combinations. In Padua (2011) 
defines pipelining as a parallel processing strategy in which an operation or calculation is partitioned into 

unconnected stages. As evidenced by Huang et al. (2019) and Kim et al. (2020) when using the MP on 

multiple GPUs, there will be certainty that various parts of the model will be on different GPUs. If the 

model training is done sequentially, the training process for each GPU will be active one at a time, similar 

to what is shown in figure 1b. This will cause a waste of GPU resources and will generate the so-called 

pipeline bubble phenomenon. Moreover, Rajbhandari et al. (2020) indicate that to hide the pipeline bubble 

in PP the input mini-batch is divided into several micro-batches and pipes the execution of these micro-

batches in several GPUs. 
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(a) Intra-batch pipeline parallelism 

 

(b) Inter-batch pipeline parallelism 

Figure 2. Pipeline parallelism approaches. 

In Narayanan et al. (2019) and Takisawa et al. (2020) they indicate 2 types of approaches applied to the 

PP. The first approach called intra-batch PP, which divides a mini-batch into micro-batches, an example of 

this is shown in figure 2a. The second approach called interbatch PP shown in figure 2b, indicates that 

training can be done in two stages: initial stage and steady stage. The initial stage is to enter as many mini-

batches as necessary to keep the pipeline full. In the steady stage, the forward and backward propagation 

processes alternate. This second approach reduces the pipeline bubble. PP is especially useful when 

working with large-scale models that have complex architecture and require a significant amount of 

computation, similar to MP. Importantly, unlike MP, the forward and backward propagation phases of 

different input data overlap in a pipelined manner accelerating DNN training. 

2.5   Related Work 

Distributed training of DL models has been the subject of extensive research, and various approaches have 

been proposed to improve the performance and efficiency of this process. Huang et al. presented pioneering 

research on model training with MP. In their work, GPipe (Huang et al., 2019; Kim et al., 2020) proposed 

a PP-based approach. In the work carried out by Rojas et al. (2022), the performance of distributed training 

is analyzed when carrying out experiments using various parallelization mechanisms, such as PyTorch 

DDP, Horovod, DSP and FSC. The experiments run in this study were developed on the PyTorch 

framework applying DP-based parallelism techniques. In another study (Chatelain et al., 2022) they 

experiment training large models using the sharded data parallel strategy implemented in FSC and PyTorch. 

In this study they experiment with the possibilities of cheating the scaling laws with spurious parameters to 

save on training costs. Another study (Liang & Alsmadi, 2022) evaluated the performance of DSP in 

classification tasks through seven neural network architectures. 

PipeDream (Narayanan et al., 2019), Xpipe (Guan et al., 2020), HetPipe (Park et al., 2020), Dapple (Fan 

et al., 2021), Chimera (Li & Hoefler, 2021), AvgPipe (Chen et al., 2023), AutoPipe (Liu et al., 2022), start 

from the PP approach to improve training performance, through the proposal of architectures and 

algorithms looking for ways to mitigate the pipeline bubble problem. In a recent article (Zhang et al., 2023) 

they perform extensive experiments with variable configurations to evaluate the factors that can affect the 

performance of GPipe. In the study Luo et al. (2022) addresses the issue of training performance and 

classifies the tools according to the type of pipelining, either asynchronous pipelining or synchronous 

pipelining. Asynchronous pipelining offers flexibility and speed, but with possible data inconsistency. 

Synchronous pipelining provides stability and consistency, although there may be a bottleneck. In Yang et 

al. (2022) a new pipe scheme called WPipe is proposed. In this study, perform a comparison between WPipe 

against the GPipe, PipeDream and PipeDream2BW libraries in training with natural language models. 

Our work is inspired by the aforementioned research and seeks to contribute to the DL field by 

performing a comparative analysis of the TGP, FSC and DSP libraries on the PyTorch framework. This 

research aims to provide valuable information in this field by evaluating the performance and efficiency of 

these libraries using the same approach of MP on DNN using PP. 
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3   Model parallel libraries 

Torchgpipe (TGP). It has the implementation of GPipe in PyTorch. GPipe is a library that implements a 

PP approach in which model segments are trained sequentially in stages. That is, once the layer sequences 

in the network are defined in terms of the model parameters (direct calculation function, and the cost 

estimation function), GPipe divides the network into cells and places each cell in its respective accelerator. 

During the forward step, GPipe first splits each mini-batch into micro-batches, which are piped through the 

accelerators. During the backward step, the gradients for each micro-batch are calculated based on the same 

model parameters used for the forward step. To allow data transfer between neighboring partitions, 

communication primitives are automatically inserted into partition boundaries. Consequently, the initial 

segments are trained before the final segments. This allows better utilization of computing resources and 

speeds up the training process (Huang et al., 2019; Kim et al., 2020). 

FairScale (FSC). It is an extension library for large-scale, high-performance training in PyTorch. FSC 

makes the latest distributed training techniques available in the form of composable modules and easy-to-

use APIs that attempt to scale models with limited resources. With FSC, models can scale by layer 

parallelism and tensor parallelism. Also, by using the layered fragmentation model, memory utilization is 

reduced and computational calculations become more efficient. On the other hand, it applies techniques 

that try to optimize the use of memory and training performance, regardless of the scale of the model. The 

PP in FSC is an implementation as described in GPipe. In FSC, the implementation of fairscale.nn.Pipe 

was adopted from TGP (FairScale, 2021). 

DeepSpeed (DSP). Microsoft is the developer behind this library, which focuses on improving the 

efficiency and scalability of training DL models in high-performance systems. DSP is governed by three 

pillars of innovation, which are, (1) training through systems such as ZeRO, 3D-Parallelism, DeepSpeed-

MoE, ZeRO-Infinity, (2) inference by reducing latency and cost, this through inference-customized kernels 

and (3) compression through a library specifically designed to facilitate model compression. 

The PP in DSP improves both memory and computational training efficiency by dividing the layers of a 

model into stages that can be processed in parallel. DSP uses gradient accumulation to extract PP. Training 

data is divided into micro-batches for parallel processing in the pipeline. The stages communicate the 

activations and gradients with each other. The local gradients are accumulated and reduced in parallel, 

followed by updating the weights by the optimizer. DSP provides hybrid data and PP, can be combined 

with MP. For the implementation of the DSP PP in PyTorch it is required that the model be expressed in a 

sequence of layers (torch.nn.Sequential) (Aminabadi et al., 2022; DeepSpeed, 2023; Rasley et al., 2020). 

DSP is compatible with several DL frameworks, such as PyTorch, which is the one we will be using in this 

article, as it can be used on a wide range of hardware architectures and multi-GPU systems. 

4   Evaluating Parallelism Mechanisms 

4.1   Library Features 

TGP (Kim et al., 2020) performs training on a model by implementing GPipe, the procedure involves 

simply wrapping the model with the torchgpipe.GPipe function. It is important to note that the model must 

be structured as a nn.Sequential, since GPipe will automatically segment the model into partitions. Each 

partition represents a set of consecutive layers that run together on a single device. GPipe optimizes training 

efficiency by using CUDA, automatically managing the transfer of each partition between different devices. 

Determining the optimal balance for a model can be challenging. Especially when designing or adjusting 

an evolving model, the architecture of the model can change over time. In this situation, the use of the 

torchgpipe.balance function is recommended to achieve automatic balancing. Although this may 

not result in a perfect optimum balance, it does ensure a good enough level of balance. Among the available 

balance tools are balance_by_time() and balance_by_size(), both based on layer profiles. It 

is important to mention that the checkpoints, in a process known as recalculation, rerun forward propagation 

during backpropagation. This assumes that both runs are identical, which in turn requires that all layers be 

referentially transparent in forward propagation to ensure process consistency. 
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FSC (FairScale, 2021) introduces advanced efficient memory and performance management strategies 

for model training. One of these features is Efficient Memory Management, which is based on ZeRO 

algorithms to balance training in parallel with DP and MP, resolving the conflict between memory, 

computation, and communication. This is accomplished by implementations such as Optimizer State 

Sharding, Sharded Data Parallel, and Fully Sharded Data Parallel. Additionally, techniques like 

OffloadModel take advantage of the CPU to store key model elements and gradients, improving training 

efficiency by moving selected layers to the GPU as needed. Other solutions include Adascale for training 

large batches without loss of precision, Enhanced Activation Checkpointing to reduce GPU memory usage, 

and SlowMo Distributed Data Parallel to address slowdowns in distributed training. 

Furthermore, FSC also extends the functionality of PyTorch with features like 

fairscale.nn.checkpoint.checkpoint_wrapper, which makes it easier to manipulate 

arguments in the forward step, transfer intermediate data to the CPU, and handle non-tensor results. These 

combined strategies and tools seek to address critical memory, communication, and efficiency problems in 

model training, offering practical solutions and significantly improving the performance and scalability of 

the training process. 

DSP (DeepSpeed, 2023) offers advanced strategies for efficient model training, highlighting the PP as a 

crucial tool. This technique accommodates various forms of parallelism, including the combination of DP, 

MP, and PP, achieving scalability in models of up to a trillion parameters through 3D parallelism, and 

training acceleration up to 7 times on low-bandwidth clusters. The Zero Redundancy Optimizer (ZeRO) is 

a pillar in DSP that enables the training of massive models. With ZeRO enabled, it is possible to train 

models of more than 13 billion parameters without MP and up to 200 billion with MP. In addition, 

techniques such as Activation Partitioning optimize memory in ZeRO by reducing the activation memory 

footprint proportional to the degree of MP. 

ZeRO-Offload, meanwhile, pushes model size limits efficiently by leveraging both GPU and CPU 

resources. Smart Gradient Accumulation enables larger batches with limited memory by splitting them into 

sequential micro-batches, and Communication Overlapping overlays communication on backpropagation, 

improving performance even with modest batch sizes. Additionally, DSP simplifies data loading by 

automatically handling batch creation from PyTorch data sets. These combined strategies offer complete 

solutions for efficient and scalable training of DL models. 

4.2   Libraries implementation level 

The initialization of pipeline training varies depending on the library. In the code listing in figure 3, you 

can see part of the initialization and execution code for TGP, FSC, DSP. DSP is a highly configurable 

library, up-to-date and with many optimization options, for this reason it shows more complex code. 

 

Figure 3. Initialization and execution code of the PP libraries. 

The first lines of code that are observed belong to TGP (lines 4, 5, and 6). In these lines of code the 

initialization of TGP is performed. TGP optimizes training using CUDA and automatically moves each 

partition of the neural network model to different devices. By default, TGP assigns in order the GPUs 

starting at cuda:0 for each partition. Line 4 is used to set a sample input into the model to then calculate the 
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balance of the partitions on the GPUs, either time-based or size-based (line 5). In line 6 TGP is executed 

loading the neural network model, balance, chunks (micro-batch) and checkpoint. The latter is used to 

checkpoint all micro-batches and reduce memory usage. Other options are “except last” to apply checkpoint 

except to the last micro-batch and “never” to not apply checkpointing. Other important training instructions 

are added in the training code. 

FSC is a library based on GPipe and TGP. However, it lacks some features like auto balancing. Line 9 

shows how the FSC execution is. It is observed that this instruction, as in TGP, also receives the network 

model, the balance and the chunks. In the case of balancing, this is provided manually as a list of layer 

numbers per GPU (balance = [2,3,2,3,2,2,2,3]). Like TGP, FSC requires adding other instructions in the 

training to successfully execute parallelization. 

Finally, DSP requires a slightly more complex process to initialize and run the workouts. From lines 12 

to 16 the pipeline module is executed. This module receives several important parameters. The first 

parameter “layers” is assigned the result of the join_layers function, which is responsible for taking a 

neural network model from the torchvision.models package to make it sequential. Other parameters 

are for the calculation of the loss function, the number of stages in which the model will be divided, the 

balance method (partition method) and the checkpoint interval. Subsequently, DSP initialization is executed 

to load the model generated by the pipeline module, the optimizer, and the training dataset. Training 

execution can be simplified by using the engine.train_batch() command that encapsulates typical 

training instructions. 

Balance. A relevant element to take into account is the criteria by which the MP libraries carry out load 

balancing in the GPUs when dividing the neural network model. This balance requires allocating a certain 

number of layers for each available GPU. For example, for a neural network with 19 layers and 8 GPUs the 

balance can be: balance = (2,3,2,3,2,2,2,3). 

DSP uses two criteria, one called “parameters” in which the number of trainable parameters on each 

pipeline stage is used and another called “uniform” that balances the number of layers per stage. There is 

another criterion based on regular expressions, but it will not be taken into account in this study. In the case 

of TGP, it also allows two balancing criteria. One based on time (balance_by_time) and the other based on 

size (balance_by_size). By time, it is taken the elapsed time of each layer and by size it is detected the 

CUDA memory usage of each layer. FSC is a simpler library and does not provide automatic balancing 

mechanisms, so it requires manual balancing assignment. That is, establish how many layers should be 

executed per GPU. 

4.3   Experimental Evaluation 

Experimental Setup. The following experiments aim to evaluate the performance of the three previously 

described libraries (TGP, FSC, and DSP). We use PP as a starting point, however we also test for pure MP 

when the library allows it. 

It is important to mention that MP is used with neural network models that do not fit in the memory of 

a GPU, since this type of parallelism is based on dividing the artificial neural network into multiple 

partitions, depending on the number of GPUs available or other special criteria. In the following 

experiments, a small neural network with 138,000,000 parameters is used, which is considered small 

compared to other trillion-parameter neural networks. However, for the type of experiments that we are 

going to carry out, it is sufficient and allows us to carry out DL training in reasonable times. Our intention 

is to experiment with the types of libraries, to determine their differences and to lay the foundation for 

future studies. 

The experiments are carried out using the CIFAR100 dataset and the VGG19 neural network. A 

sequential version of VGG19 was used as this is a requirement of some MP libraries. A sequential version 
is required so that the neural network can be partitioned, assigned to GPUs, and computed correctly. In 

most cases the transformation of a typical neural network model to its sequential version is not automatic. 

The results obtained are from the execution of 25 epochs. In addition, 10 repetitions of each training were 

performed to obtain statistically correct results. Regarding the use of hardware, the parallel trainings were 

executed scaling up to 8 GPUs. 

In these experiments we evaluated the PP depending on the type of library. In all cases we use a batch 

size of 128. In the case of TGP and FSC to enable PP we use a micro-batch (chunks) of 8 and 16. This 

means that the batch size is divided into 8 or 16 depending on the experiment. We also experimented with 

a microbatch of 1 (doesn’t split the batch) by disabling PP and running the trainings in MP. Due to the 
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differences between the libraries, the DSP configuration is different due to the hybrid parallelism that it 

implements and the configurations that it supports. With DSP we maintain a micro-batch of 16 and it was 

not possible to implement pure MP. 

Balance is an important element in training. So, we also use it as an evaluation criterion. For both TGP 

and DSP the aforementioned criteria were implemented. FSC requires manual assignment of the balance. 

So, we obtained the balance of layers that TGP performed for each criteria and for each experiment, and it 

was replicated for FSC. Table 1 shows a summary of the most important configurations that were 

implemented in the trainings. 

Table 1. Experimental setup. 

Element name Implemented element 

Deep learning framework PyTorch 

Parallelism type Model, pipeline 

Parallelism library Torchgpipe, FairScale, DeepSpeed 

Network model VGG19 

Optimizer SGD 

Batch size 128 

Micro-Batch 8, 16 

Image dataset CIFAR100 

GPUs 8 

 

Hardware Configuration. The experiments to be developed in this article were executed in the high-

performance system called ThetaGPU, which is located in the Argonne Leadership Computing Facility. 

Each ThetaGPU node integrates 8 NVIDIA DGX A100 GPUs, along with 2 AMD EPYC 7742 processors. 

Likewise, it is made up of 24 nodes, with 26 TB of DDR4 memory and 8320 GB of GPU memory. Theta 

performance is 11.7 petaflops and ThetaGPU is 3.9 petaflops. 

Table 2. PP with different types of balance and using a micro-batch of 16. 

# GPU 

TGP FSC DSP 

Size Time Size Time Uniform Parameters 

Loss Time Loss Time Loss Time Loss Time Loss Time Loss Time 

2 0.86 2424 0.85 2436 0.86 2360 0.83 2386 0.93 2964 0.82 2934 

4 0.87 1691 0.86 1925 0.87 1697 0.86 1826 0.88 1842 0.85 1823 

6 0.84 1909 0.88 1896 0.86 2027 0.88 2005 0.84 1433 0.95 1445 

8 0.91 2214 0.87 2197 0.89 2331 0.88 2235 0.91 1316 0.94 1306 

 

Experimental Results. The results of the experiments can be seen in the tables 2 and 3. Table 2 shows the 

data from training with the three PP libraries. In all cases, the training time in seconds and the loss are 

reported. For each library, trainings were performed using two types of balance. In the case of TGP and 

FSC, balance by time and size was used. DSP implemented “uniform” and “parameter” type balancing. An 

exact comparison could not be made as DSP does not support the balance types of the other two libraries. 

In table 2 you can see similar loss values in all the results. This result was expected due to the type of 

neural network used. It was not difficult to find optimized hyperparameters to obtain loss values appropriate 

to the type of training. For this study, loss is an important metric. However, it is not an important indicator 

to observe differences between libraries. The previously described behavior with the loss is also replicated 

in the results of table 3. 

Regarding the training times, we can see that DSP with 8 GPUs has a superior performance of 1316 and 

1306 seconds in the “uniform” and “parameter” balancing modes, respectively. The above with respect to 

TGP and FSC that reported higher times between 2197 and 2235 seconds. On the other hand, in the case of 

TGP and FSC there is an erratic behavior in the performance. With 8 GPUs, similar training times were 

generated to those generated with 2 GPUs. This behavior does not occur with DSP where scaling on GPUs 

slightly increases performance with both balancing methods. The poor performance of TGP and FSC when 

scaling is attributed to the wait times generated between GPUs, which are increased by using a micro-batch 
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of 16. That is, with a large number of microbatch, the pipeline is divided into smaller stages, decreasing 

performance. We can verify this with the results of the table 3 in which micro-batches of 1 and 8 were used. 

In the case of DSP this behavior is not reflected. We attribute this to the fact that DSP, in addition to PP, 

also automatically implements a type of hybrid parallelism (Akintoye et al., 2022; DeepSpeed, 2023; Zeng 

et al., 2021), so it can take advantage of the GPUs at its disposal and not suffer from the effects of a large 

number of stages in the pipeline. 

Table 3 shows results with micro-batches of 1 (Mbs1) and 8 (Mbs8). When using a micro-batch of 1, the 

pipeline is disabled and the training runs with pure MP. The trainings were executed for the two types of 

balance. With DSP, this type of training was not carried out due to the configuration parameters, it was not 

possible to implement it. One of the first observations that we can make is the increase in performance 

reflected in all cases when using a micro-batch of 1. In our experiments this behavior is presented by the 

type of neural network used, but with large neural networks that do not fit in the GPU memory the pipeline 

is an important mechanism to improve performance. Despite this, there will always be a trade-off between 

GPU utilization and micro-batch size. Without a pipeline, the performance is good, but similar times are 

presented in trainings with 2 and 8 GPUs. This is an indicator that our choice of micro-batch must be 

modified until acceptable values are found for the type of hardware, neural network model, and dataset. 

Training with micro-batch of 8 also shows an increase in performance over training with micro-batch of 

16. This behavior was described earlier in this section. 

Finally, if we compare the balance types for each parallelism library, no significant differences are 

reflected among themselves at this scale. In other words, with a small neural network and few GPUs. In 

complex execution environments, this type of optimization can make a difference in performance when 

training neural network models. 

Table 3. PP with different types of balance and using a micro-batch of 8 (Mbs8) and micro-batch 1 (Mbs1, pure model 

parallelism). 

# 

GPU 

Torchgpipe FairScale 

Size Time Size Time 

Mbs1 Mbs8 Mbs1 Mbs8 Mbs1 Mbs8 Mbs1 Mbs8 
Loss Time Loss Time Loss Time Loss Time Loss Time Loss Time Loss Time Loss Time 

2 0.85 383 0.71 1356 0.86 378 0.84 1387 0.87 386 0.83 1343 0.88 392 0.87 1372 

4 0.81 237 0.83 880 0.82 247 0.81 933 0.82 295 0.85 916 0.82 286 0.84 972 

6 0.79 262 0.83 1026 0.81 253 0.87 1024 0.81 307 0.83 1074 0.82 266 0.84 1062 

8 0.81 308 0.87 1175 0.84 294 0.89 1176 0.82 427 0.81 1251 0.81 376 0.83 1219 

 

5   Concluding Remarks and Future Work 

Acceleration of neural network training through parallelism is an increasingly important element in DL 

research. The efforts of many researchers are reflected in a large number of studies in which new libraries, 

algorithms, and parallelism approaches are proposed. They seek to take advantage of the hardware power 

of high-performance computing systems. This study focused on Pipeline Parallelism, which is a subset of 

Model Parallelism. The main concepts of this type of parallelism were described. In addition, 3 libraries 

that implement Pipeline parallelism were described in detail and experiments were carried out to measure 

the performance based on certain criteria of the type of parallelism. 

As future work, it is necessary to carry out training with large neural network models, which allow to 

more accurately evaluate the performance of pipeline libraries and algorithms. In addition, we believe it is 

necessary to implement more libraries based on model parallelism. We have noticed differences in the 

libraries related to the features and configurations that they offer to carry out the trainings. An example is 

DSP, which offers a very wide number of configurations, not only to implement pipeline parallelism, but 

also to perform memory and IO optimizations. Based on the above, we also have as future work to delve 

into the optimizations and techniques that DSP uses to perform parallelism. 
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