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Abstract. One of the main challenges in the efficient operation of a high-performance computing 

(HPC) center is the energy consumption generated by the operation of the data center where the HPC 

equipment is housed, mainly because this consumption is reflected in very high accounts payable, and 

this may affect the level of service offered to users. The study of the different factors and elements that 

can make energy consumption more efficient in these data centers provides an opportunity to focus 

these resources on elements that favor the use of HPC. The design variables provided by manufacturers 

to manage HPC systems and monitoring systems provide an accurate view of the behavior of these 

variables according to how they are used. HPC architectures are configured in a very particular way for 

each HPC data center, creating particular scenarios of operation and performance in each 

implementation. Various proposals and technologies have been developed for the analysis of the energy 

consumption of a data center, and the processing elements include a series of indicators and 

technologies that manufacturers have developed to determine the energy efficiency. This article seeks 

to identify this series of processing and performance variables, which affect the energy consumption of 

HPC equipment, for the implemented computing architectures based on the analysis of performance 

models to obtain a general over-view of their effect on energy consumption in a case study to identify 

the behaviors of particular job assignment factors and provide an analysis of the energy consumption 

under particular conditions. 

Keywords: High-performance Computing, Data Center, Energy Simulation, Power Usage 

Effectiveness. 

1   Introduction 

Data centers that house high-performance computing (HPC) equipment have very particular characteristics 

when it comes to their computing architectures, data networks and cooling systems, as well as the 

management of their services. These architectures are based on the very special characteristics of each 

implementation, which generate very different and complex implementations for each piece of equipment; 

these architectures are made up of hardware and software for operating and monitoring the performance of 

each element, which is why standardized performance analysis models must be individualized to each piece 

of equipment implemented. Coupled with this, the speed at which both hardware and software updates 

emerge generates a continuous update dynamic: “The appearance of new Instruction Set Architectures 

(ISAs) in most recent High-Performance Computing (HPC) systems, together with the layers of system 
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software and complex scientific applications running on top of them, makes the performance and power 

figures challenging to evaluate” (Criado, et al., 2020). 

Due to these new computing architectures in HPC and different processes and software, it is important 

to implement precise methodologies to make the most of the installed computing capacities; the use of 

optimization and performance improvement methodologies make it possible to analyze all these variables 

together and to interpret the behavior of each of the elements of an HPC system. This is achieved using 

methodologies such as those proposed by the EU Center of Excellence for Performance Optimization and 

Productivity (POP) (Wagner, Mohr, Giménez, & Labarta, 2019). Generating a structured analysis of these 

variables by applying methodologies such as those mentioned above to the metrics collected from an 

implemented system provides practical results concerning these models. The performance of simultaneous 

multi-threading (SMT) strongly depends on the architecture and the compiler (Banchelli, Garcia-Gasulla, 

Houzeaux, & Mantovani, 2020). These variables and monitoring systems make it possible to analyze the 

performance and energy consumption of the elements of the installed HPC system. 

This article is focused on modeling the behaviors that affect the energy consumption of the HPC 

equipment in order to carry out an analysis of this energy consumption and the variables that affect it. The 

energy consumption of HPC data centers is one of the most important issues in the operation of these centers 

(D’Agostino, et al., 2019) and is a factor of great importance when it comes to evaluating the efficiency 

and productivity of the equipment housed in a data center and the data processing that is carried out. The 

analysis of the energy consumption of a data center has to be focused directly on the equipment that is 

housed in it, and in the case of a specialized data center such as an HPC data center, it must also be known 

how the processing and storage operations and the use of the data network are carried out. It is evident that 

different resource optimization techniques must be selected for underloaded and overloaded hosts 

depending on the servers and user data type (Hijji, et al., 2022). This approach must be applied to 

appropriate optimization techniques to obtain a result for the analyzed architecture. 

Processing in HPC systems involves performing different processing jobs that are made up of a series 
of executions and algorithms according to the user’s needs; these jobs are assigned a number of central 

processing units (CPUs), and the CPUs are grouped by nodes (see Fig. 1). These jobs are run on different 

software platforms and have different execution times. Due to the fact that the jobs being executed have 

different performances and different pieces of software that support the jobs on the HPC processing 

equipment, analyzing them requires that an understanding of all the processing teams (Funika, Zientarski, 

Badia, Labarta, & Bubak, 2008). These characteristics generate different energy consumption behaviors 

and are analyzed using the same behavior variables that are generated by performance control systems. 

 

 

Figure 1. CPUs and nodes used for each job assigned in an HPC system. 

Performing frequent analyses of the behaviors and performance of the HPC equipment that is being 

operated makes it possible to visualize and prevent behaviors that may derive from a physical or 

configuration failure: “Performance Audits provide an initial analysis and overview that measures a range 

of performance metrics to assess quality of performance and identify the issues affecting performance” 

(Wagner, Mohr, Giménez, & Labarta, 2019). 

An important tool for maintaining efficient energy consumption is the use of performance audits, since 

they allow one to visualize the energy consumption and the behaviors that cause increased energy 

consumption. The performance of a job de-pends on how well these functions can be approximated; the 
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first dependence is im-posed by the specific application, and the second is related to the physical model and 

basis set employed (Mohr, et al., 2017; Dawson, Mohr, Ratcliff, Nakajima, & Genovese, 2020). 

The analysis of performance variables in HPC equipment generates a series of energy consumption 

behaviors related to processing actions and job assignment. In this way, an analysis of the behavior of the 

processor and its control actions can be generated. The assignment of processes and the different 

characteristics of each HPC architecture and the type of software and specific driver for each job should be 

considered. The analysis of these architectures can be combined with different techniques to develop 

projections of the energy consumption, which can be used to optimize the energy consumption. Deep 

learning techniques have been used to under-stand the balance of HPC infrastructure in terms of speed and 

energy consumption (Carastan-Santos & Pham, 2022). 

For this article, a series of performance analysis and monitoring variables are pro-posed for the purpose 

of identifying how they interact with each other and influence the energy consumption of HPC equipment, 

so that the energy consumption can be characterized for analysis and the relationships between these 

variables and the different actions that make up HPC processing can be determined. 

1.1 Center for Data Analysis and Supercomputing at the University of Guadalajara 

The Data Analysis and Supercomputing Center (CADS) of the University of Guadalajara is a high-

performance research center serving the scientific community and has HPC infrastructure housed in a 

specialized data center that allows the proper operation of the equipment (CADS, 2018). The installed 

computing architecture consists of a series of parallel Xeon Gold processors, Nvidia Tesla P100 processors 

and other Xeon Phi equipment (Table 1). 

The allocation of computing resources to each job is done centrally and corresponds to the particular 

requirements of each project, which refer to the processing, storage and memory requirements. This 

administration is carried out through process control and scheduling. This system allows the monitoring of 

the operating parameters of the infrastructure and the energy consumption associated with the different 

systems. 
For this article, the energy consumption was projected and the behavior of the HPC system installed in 

CADS was analyzed; specifically, different jobs with different resource allocations and different software 

components and functions were analyzed. 

Table 1. Description of CADS infrastructure processors. 

Processor Cores Memory 

Xeon-6154 (Skylake) 18 cores at 3.0 GHz 192–392 GB RAM 

Xeon-6154 (Skylake) 18 cores at 3.0 GHz 512 GB RAM 

Intel Xeon Phi 7250  
192 GB DDR4 

16 GB MCDRAM 

Xeon Gold-6154 (Skylake) 18 cores at 3.0 GHz 

64 GB DDR4 

PCI Nvidia Tesla 

P100 

Intel Xeon E5-2650v4 12C/24T 

2.20 GHz 
 128 of memory 

 

2   Energy Performance Analysis in HPC Processing 

This article proposes a model structured using stages based on specialized performance analysis software 

associated with user jobs, each of which has special characteristics. The first stage involves taking 

measurements using the sensors installed in the HPC monitoring system of the CADS at the University of 

Guadalajara; the measurements of the variables provided by the system were characterized according to the 

assigned jobs. These variables are defined in a particular way, so that once the crossovers are made, we can 

identify what causes energy consumption. Once this characterization is complete, overall and focused 

analyses are carried out. 
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The goal is to identify behaviors and relate them directly to energy consumption. The variables are 

identified and a comparative performance modeling table is generated, projecting the impact of each job 

according to its defined characteristics and allowing a detailed projection analysis. The platforms generate 

reports concerning these variables, and they will be analyzed to identify proposed solutions and 

conclusions. 

The analysis of the energy consumption is vital to identifying how to achieve efficiency in HPC systems. 

This has become a high priority due to their complexity: “Energy efficiency is already a major concern in 

the design of computer systems, especially in the design of Exascale systems. There are a few activities 

targeting his problem” (Jarus, Varrette, Oleksiak, & Bouvry, 2013).  

The measurement survey is developed using the Slurm monitoring program by registering the equipment 

housed in the data center; likewise, the energy consumption of the load centers connected to the same 

equipment is monitored. The work structure and use of the cluster are based on nodes, which are logically 

ordered according to an assigned number of processors. Once the nodes are structured, the writing and 

reading processing behaviors associated with each job must be monitored, and the number of CPUs used 

by each node is identified. 

The workload description can be used to obtain the relationship between the function performed by the 

processor, the time it takes to perform this function and the energy consumption that occurs while this 

function is being performed; these data allow us to associate different architectures and the software being 

used with the hardware function and to determine how it affects the energy consumption (Table 2). The 

time used by each process is directly related to its energy consumption and allows the identification of 

behaviors that are not consistent with the processor design or the type of job 

Table 2. Work load variables description. 

Function Description Energy consumption 

Relationship 

AllocCPUS 
Total number of CPUs allocated to the 

job 
Energy per CPU 

 AllocNodes 
Total number of nodes allocated to the 

job 
Total energy per node 

CPUTimeRAW 
Time used (Elapsed time * CPU count) 

by a job or step in cpu-seconds 
Time of use 

Avedisc read Average disk usage read Energy associated used 

Avedisk write Average disk usage write Energy associated used 

ConsumedEnergy Consumed energy per job Energy consumption 

CPUTime Tiem of cpu usage Time per CPU  

   

 

The analysis of different studies indicates that the performance of HPC equipment is important, and its 

various architectures can be affected by the elements that compose it: “The benchmarking results 

demonstrate the importance of sophisticated memory allocation on machines” (Plesser, Eppler, Morrison, 

Diesmann, & Gewaltig, 2007). In the case of memory use, using the disk writing and disk reading variables, 

we can identify correlations and customize the energy consumption. 

Monitoring the HPC process causes a large amount of disk reading and writing, as well as a large amount 

of CPU usage assigned to the nodes, although this operation is complex; in some studies, it has been shown 

that this operation causes fewer problems. Other studies have achieved good scaling for large-scale 

simulations on systems with thousands of processors, albeit on less difficult problems (Djurfeldt, et al., 

2005; Migliore, Cannia, Lytton, Markram, & Hines, 2006). This should generate energy consumption 

behaviors of the same order. The different architectures allow this energy consumption to be made more 

efficient using the process controllers and the workloads to be executed, and “even in kernels where the 

CPU reaches better runtimes, the FPGA counterpart is more energy efficient” (Favaro, Dufrechou, & 

Oliver, 2022). The analysis of the set of factors of the hardware and software in an HPC system generates 

different behavior conditions and variations in the energy consumption that respond to these particularities. 
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3   HPC Workload Energy Consumption 

Given the complexity of the factors to be analyzed in an HPC system, it is important to identify the processes 

to be analyzed and then to define the variables of their behavior; the different monitoring tools become the 

data collection tools used to measure these variables. This article analyzes these variables for each assigned 

job in order to identify software and hardware factors in processing. 

In this work, we only analyze the processing system; however, studies related to energy consumption in 

HPC systems have found that another of the factors of great importance is the use of the data network, since 

in exascale systems, this factor determines energy consumption and influences different workload factors 

(POP, 2016) 

Identifying the monitoring variables when running a process is the first step that must be performed to 

characterize the energy consumption processes according to the variables applied to the job (Slurms Guide, 

2021). The first monitoring variable analyzed the use of nodes and the number of CPUs per node for each 

assigned job, finding that a given job, although it has an assigned number of CPUs, does not always use all 

of them, as shown in Fig. 2. To measure the use of nodes, we obtain the total number of CPUs assigned to 

a process, or the “total number of CPUs allocated to the job (AllocCPUs)” (Criado, et al., 2020), which is 

also referred to as NCPUs. To determine the number of nodes assigned to each job, we calculate the 

“number of nodes allocated to the job/step (AllocNodes)” (Slurms Guide, 2021). 

 

 

Figure 2. The number of CPUs and nodes used for each job. 

Once the number of CPUs used for each job has been identified, we determine how long each CPU is 

used by the job that is assigned; this can vary according to the type of execution that is being carried out. 

To measure this, the CPU time (or process time) is defined as the amount of time for which a CPU was 

used to process the instructions of a computer program or operating system. For the data collection system, 

CPUTimeRAW is the time used (elapsed time * CPU count) by a job or step in CPU seconds, and DBIndex 

is a unique database index for entries in the job table (Carastan-Santos & Pham, 2022; Ficher, Berthoud, 

Ligozat, Sigonneau, & Wisslé, 2021). The execution time of each CPU for each job can be viewed as a set 
of processes to determine how these times affect the energy consumption; this can be seen in Fig. 3. 

 

 

Figure 3. CPU time (raw usage) per month for each job. 
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The energy consumption related to the job being processed is analyzed by integrating the time of use 

and how much physical reading and writing it represents, and it can be visualized in terms of the energy 

consumption per CPU. This visualization makes it possible to analyze a set of factors for the energy 

consumption and calculate their correlations, as shown in Fig. 4. The node analysis involves projecting the 

energy consumption of all the nodes assigned to the job and all the CPUs that make up each node. 

 

 

Figure 4. Energy consumed per node for each job. 

The energy consumed by each job represents how much each node uses the CPUs assigned to it; this 

energy consumption is determined by the usage times of the CPUs. In this way, each job has a certain load 

usage time, and depending on the workload that is assigned to the node, the job consumption will be as the 

type of use of the assigned CPUs. In this way, it is possible to determine the usage time of the CPUs 

assigned to each node and associate it with the corresponding job, as shown in Fig. 5. 

 

 

Figure 5. Usage times of nodes for each job. 

To characterize the variables of the energy consumption during the execution of jobs, we can consider a 

series of activities carried out by processors that generate energy consumption; these factors determine the 

time of use and the type of process, which can help us break down what causes this energy consumption. 

In the case of disk reading, which is carried out to obtain data and send these data to be processed, and disk 

writing, which provides the generated data, the node is assigned certain hardware resources that are used 

for this function, although they are not in use for the entire time that they are assigned. Being an assigned 

resource and not being in use, this resource does not represent the same energy consumption. AveDiskRead 

and AveDiskWrite represent the average disk usage for reading data and the average disk usage for writing 

data, respectively. These values are defined for each assigned job and represent a series of functions, as 

shown in Fig. 6. 
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Figure 6. Disk read and disk write usage for each job. 

This analysis considers a process that is composed of a series of repetitive processes based on processing 

iterations. This behavior represents a periodic request for the same number of resources with the same 

number of nodes and CPUs for a large number of assigned jobs. The behavior is generally very stable. The 

CPU and node usage are shown in Fig. 7. However, the disk read and write usage, as well as network and 

memory factors, vary because the allocated process contains different command schedules for processor 

usage. 

 

 

Figure 7. AllocCPUs and AllocNodes for each job in a synchronous process. 

The same repetitive process involving the use of CPUs and assigned nodes that we analyze in Fig. 7 is 

made up of a series of reading and writing variables, as well as network use, which cause changes in the 

energy consumption. We see in Fig. 8 that all the processes, even those with the same CPU usage, do not 

represent the same energy consumption; here, differences are also identified in the architectures of the 

processors that are combined when the jobs are assigned. 
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Figure 8. CPU energy usage for each job. 

The total energy consumption of a job is made up of the factors mentioned in Fig. 8. We can see how 

the energy consumption of the CPUs for each job varies, and even though the allocation of resources is 

stable, the energy consumption is variable. This is due to the structure of the workload, the different 

software elements and the management of the operation of an HPC system. One can determine the energy 

consumption according to each type of job, considering not only how many CPUs have been assigned but 

also that the interference of the other processes means that there are significant variations in the energy 

consumption behavior, as shown for job 65 and job 84 in Fig. 8, which correspond to almost identical 

processing assignments, as shown in Fig. 7. 

This energy consumption behavior can be controlled or predicted through the characterization of the 

energy consumption according to the software elements that make up the assigned workload, which is added 

to the number of CPUs that make up the assigned node. In this way, an analysis model based on hardware 

performance variables and a characterization of the functions that make up the workload can be used to 

describe and predict the average energy consumption per job. Doing this on a large scale in an HPC system 

would allow predictions to be made with different techniques, such as machine learning or deep learning 

techniques, to make the energy consumption more efficient in highly specialized architectures and with 

different processors and pieces of equipment that are in operation in the analyzed data center. 

4   Conclusions 

The different performance analysis techniques that are applied to HPC systems allow us to visualize how 

the assigned jobs are carried out, and in this way, we can generate energy consumption reports associated 

with each architecture and type of software implemented. 

The behavior of the energy consumption in the analyzed HPC system is directly affected by the type of 

job that is processed; we can see this when we analyze the reading and writing variations of the processing 

variables in a system (AllocCPUs) and the number of nodes assigned to each job (AllocNodes). 

Writing to the disk and reading from the disk generate an amount of energy consumption that is 

proportional to the number of assigned nodes; however, depending on the requested job and its concurrency, 

this energy consumption either stabilizes or increases. 

The analysis of the energy consumption is influenced by the type of software that contains the workload; 

its characteristics directly affect the energy consumption of each node since the use of CPUs and reading 

and writing operations varies as the equipment processes the jobs. Controlling this type of behavior 

represents an assignment challenge that involves the development and scheduling of jobs; controlling these 

behaviors, as shown in Fig. 6, can make the energy consumption more stable, which can have a large impact 

on the total energy consumption of an HPC system. 
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