Consecuencias del amonio en la fatiga central en atletas, posible efecto neuroprotector del ejercicio

  • Javier Porras-Alvarez Universidad Pedagógica y Tecnológica de Colombia
Palabras clave: Fatiga, Compuestos de Amonio Cuaternario, Entrenamiento de Resistencia, Ejercicio, Sistema Inmunológico, Ácido Úrico, Encefalopatía Hepática

Resumen

Introducción. La fatiga central en el deporte está asociada a los efectos del amonio. La principal fuente de producción de amonio durante el ejercicio es el músculo esquelético. El amonio se genera como consecuencia del metabolismo energético, debido a la oxidación de aminoácidos y a la desaminación del nucleótido de adenosin trifosfato. Objetivo. Presentar una reflexión sobre el efecto del amonio durante el ejercicio de alta intensidad y su relación con la fatiga central en atletas. Discusión. Durante el ejercicio, la concentración de amonio alcanza valores superiores a 200µM (micromolar); sin embargo, en un adulto promedio se considera que valores superiores a 60µM en sangre manifiestan un trastorno por hiperamonemia. El amonio influye en la disminución del rendimiento en atletas y está asociado con los efectos nocivos para la salud en pacientes con encefalopatía hepática. Conclusiones. La práctica del ejercicio físico genera neuroprotección contra las altas concentraciones de amonio en el cerebro, pues, durante el ejercicio con altas concentraciones de amonio, los atletas no presentan los síntomas de pacientes con encefalopatía hepática, lo que implica adaptaciones metabólicas que juegan un papel importante en el metabolismo del amonio en el cerebro. [Porras-Álvarez J. Consecuencias del amonio en la fatiga central en atletas, posible efecto neuroprotector del ejercicio. MedUNAB. 2018;21(1):xx-xx. doi: 10.29375/01237047.xxxx].

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Javier Porras-Alvarez, Universidad Pedagógica y Tecnológica de Colombia

Licenciado en ciencias de la Educación Física, magíster en Ciencias de la Actividad Física y Deporte, doctorando en Medicina del Deporte, doctorando en Ciencias Biomédicas. Docente de la Universidad Pedagógica y Tecnológica de Colombia, grupo de investigación FIMED, Tunja, Boyacá, Colombia.

Referencias

Nybo L, Secher NH. Cerebral perturbations provoked by prolonged exercise. Prog Neurobiol. 2004;72(4):223-261. doi:10.1016/j.pneurobio.2004.03.005

Lopéz J, Fernández A. Fisiología del ejercicio. Segunda edición. [Internet]. Madrid, España: Editorial Médica Panamericana; 2006 [citado 26 de marzo de 2018]. Recuperador a partir de: https://www.medicapanamericana.com/Libros/ Libro/3924/Fisiologia-del-Ejercicio.html

Entine J. Why black athletes dominate sports and why we’re afraid to talk about it. [Internet]. New York Times: Public Affairs. 2000 [citado 26 de marzo de 2018]. Recuperado a partir de: https://archive.nytimes.com/www.nytimes.com/books/ first/e/entine-taboo.html

Carvalho-Peixoto J, Alves RC, Cameron LC. Glutamine and carbohydrate supplements reduce ammonemia increase during endurance field exercise. Appl Physiol Nutr Me. 2007;32(6):11861190. doi:10.1139/H07-091

Bessa A, Nissenbaum M, Monteiro A, Gandra PG, Nunes L, Bassini-Cameron A, et al. High-intensity ultraendurance promotes early release of muscle injury markers. Brit J Sport Med. 2008;42(11):889893. doi:10.1136/bjsm.2007.043786

Bassini-Cameron A, Monteiro A, Gomes A, Werneck-de-Castro JP, Cameron L. Glutamine protects against increases in blood ammonia in football players in an exercise intensity-dependent way. Brit J Sport Med. 2008;42(4):260-266. doi:10.1136/bjsm.2007.040378

Viru A, Viru M. Análisis y control del rendimiento deportivo [Internet]. Barcelona: Paidotribo; 2003 [citado 26 de marzo de 2018]. Recuperado a partir de: http://www.paidotribo.com/ficha.aspx?cod=00695

Hellsten Y, Richter EA, Kiens B, Bangsbo J. AMP deamination and purine exchange in human skeletal muscle during and after intense exercise. J Physiol. 1999;520:909-920. doi:10.1111/j.14697793.1999.00909.x

McKee T, McKee JR. Bioquímica: las bases moleculares de la vida [Internet]. Estados Unidos: Mc Graw Hill Education; 2009 [citado 26 de marzo de 2018]. Recuperado a partir de: https://accessmedicina.mhmedical.com/Content. aspx?bookid=1960&sectionid=147707411

Nelson DL, Cox MM. Lehninger Principles of Biochemistry [Internet]. Alemania: Grupo editorial W. H. Freeman; 2004 [citado 26 de marzo de 2018]. Recuperado a partir de: https://onlinelibrary.wiley.com/doi/abs/10.1002/cbf.1216

Huizenga JR, Gips CH, Tangerman A. The contribution of various organs to ammonia formation: a review of factors determining the arterial ammonia concentration. Ann Clin Biochem. 1996;33(1):2330. doi:10.1177/000456329603300103

Casey A, Greenhaff PL. Does dietary creatine supplementation play a role in skeletal muscle metabolism and performance?. Am J Clin Nutr. [Internet]. 2000 [Acceso 26 mar 2018]; 72(2):607617. Disponible en: https://doi.org/10.1093/ajcn/72.2.607S.

Bøyum A, Rønsen O, Tennfjord V, Tollefsen S, Haugen A, Opstad P, et al. Chemiluminescence response of granulocytes from elite athletes during recovery from one or two intense bouts of exercise. Eur J App Physiol. 2002;88(1-2):20-28. doi:10.1007/s00421-002-0705-2

Wagenmakers AJ, Beckers EJ, Brouns F, Kuipers H, Soeters PB, Van Der Vusse GJ, et al. Carbohydrate supplementation, glycogen depletion, and amino acid metabolism during exercise. Am J PhysiolEndoc M. 1991;260(6):E883-890. doi:10.1152/ajpendo.1991.260.6.E883

Banister EW, Cameron BJC. Exercise-induced hyperammonemia: peripheral and central effects. Int J Sport Med. 1990;11(1):29-142. doi.org/10.1055/s-2007-1024864

Richter EA, Ruderman BN. AMPK and the biochemistry of exercise: implications for human health and disease. Biochem J. 2009;418(2):261275. doi:10.1042/BJ20082055

Butterworth RF. Pathophysiology of hepatic encephalopathy: a new look at ammonia. Metab Brain Dis. 2002;17(4):221-227. doi:10.1023/A:1021989230535

Felipo V, Butterworth RF. Neurobiology of ammonia. Neurobiol. 2002;67(4):259-279. doi:10.1016/S0301-0082(02)00019-9

Ott P, Larsen FS. Blood–brain barrier permeability to ammonia in liver failure: a critical reappraisal. Neurochem Int. 2004;44(4):185-198. doi:10.1016/S0197-0186(03)00153-0

Córdoba J, Mínguez B. Hepatic encephalopathy. Semin Liver Dis. [Internet]. 2008 [Acceso 26 mar 2018]; 28(1):70-80. Disponible en: https://doi.org/10.1055/s-2008-1040322.

Romero-Gómez M. Role of phosphate-activated glutaminase in the pathogenesis of hepatic encephalopathy. Metab Brain Dis. [Internet]. 2005 [Acceso 26 mar 2018]; 20(4):319-325. Disponible en: https://doi.org/10.1007/s11011-005-7913-5.

Boron W, Boulpaep E. Medical Physiology [Internet]. USA: Elsevier Health Sciences; 2012 [citado 26 de marzo de 2018]. Recuperado a partir de: https:// www.elsevier.com/books/medical-physiology-2eupdated-edition/boron/978-1-4377-1753-2

Suarez I, Bodega G, Fernandez B. Glutamine synthetase in brain: effect of ammonia. Neurochem Int. 2002;41(2-3):123-142. doi:10.1016/S01970186(02)00033-5

Nybo L, Dalsgaard MK, Steensberg A, Møller K, Secher NH. Cerebral ammonia uptake and accumulation during prolonged exercise in humans. J Physiol. 2005; 563(1):285-290. doi:10.1113/ jphysiol.2004.075838

Garg SK, Banerjee R, Kipnis J. Neuroprotective immunity: T cell-derived glutamate endows astrocytes with a neuroprotective phenotype. J Immunol. 2008;180(6): 3866-3873. doi:10.4049/ jimmunol.180.6.3866

Córdova MA. Serie Blanca. Inmunidad y ejercicio físico. Fisiología del ejercicio. [Internet]. Madrid, España: Editorial Médica Panamericana; 2006 [citado 26 de marzo de 2018]. Recuperador a partir de: https://www.medicapanamericana.com/Libros/ Libro/3924/Fisiologia-del-Ejercicio.html

Cómo citar
Porras-Alvarez, J. (2018). Consecuencias del amonio en la fatiga central en atletas, posible efecto neuroprotector del ejercicio. MedUNAB, 21(1), 115-121. https://doi.org/10.29375/01237047.3394
Publicado: 2018-11-19